Skip to main content
Top

2023 | OriginalPaper | Chapter

6. Light Management of Nanocellulose Films

Authors : Zhiqiang Fang, Guanhui Li, Gaoyuan Hou, Xueqing Qiu

Published in: Emerging Nanotechnologies in Nanocellulose

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocellulose films are emerging as a natural and inexpensive optical material for advanced photonic applications such as optical sensors, photovoltaics, displays, and photocatalysis due to their ideal combination of environmental friendliness and unique optical properties (e.g., light transparency, tunable optical haze, selective reflection of left circularly polarized light, and iridescent appearance). The light scattering and light transparency of nanocellulose films and corresponding light management mechanisms are the focus of our chapter. We first introduce the design principles and theories for the light management of nanocellulose films in terms of the nature of light, structural hierarchy of cellulose, optical properties of multiscale cellulose, and structure of the nanocellulose film. Moreover, up-to-date strategies to manipulate their optical properties (light transmittance, transmission haze (light scattering), vivid structural coloration, circularly polarization, and bright whiteness) are highlighted. After that, we demonstrate their potential uses in various value-added photonic fields (e.g., optoelectronics and smart photonic applications) as photonic materials. Finally, some comments on technical and economic problems regarding nanocellulose films for photonic applications and their future development trends are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Li, C.J. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J.Q. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L.B. Hu, Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021)CrossRef T. Li, C.J. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J.Q. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L.B. Hu, Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021)CrossRef
2.
go back to reference Z.Q. Fang, H.L. Zhu, Y.B. Yuan, D.H. Ha, S. Zhu, C. Preston, Q.X. Chen, Y.Y. Li, X.G. Han, S.W. Lee, G. Chen, T. Li, J. Munday, J.S. Huang, L.B. Hu, Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014)CrossRef Z.Q. Fang, H.L. Zhu, Y.B. Yuan, D.H. Ha, S. Zhu, C. Preston, Q.X. Chen, Y.Y. Li, X.G. Han, S.W. Lee, G. Chen, T. Li, J. Munday, J.S. Huang, L.B. Hu, Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014)CrossRef
3.
go back to reference M.S. Toivonen, O.D. Onelli, G. Jacucci, V. Lovikka, O.J. Rojas, O. Ikkala, S. Vignolini, Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30(16), E1704050 (2018)CrossRef M.S. Toivonen, O.D. Onelli, G. Jacucci, V. Lovikka, O.J. Rojas, O. Ikkala, S. Vignolini, Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30(16), E1704050 (2018)CrossRef
4.
go back to reference G. Guidetti, S. Atifi, S. Vignolini, W.Y. Hamad, Flexible photonic cellulose nanocrystal films. Adv. Mater. 28(45), 10042–10047 (2016)CrossRef G. Guidetti, S. Atifi, S. Vignolini, W.Y. Hamad, Flexible photonic cellulose nanocrystal films. Adv. Mater. 28(45), 10042–10047 (2016)CrossRef
5.
go back to reference G. Jacucci, L. Schertel, Y.T. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency. Adv. Mater. 33(28), 2001215 (2020)CrossRef G. Jacucci, L. Schertel, Y.T. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency. Adv. Mater. 33(28), 2001215 (2020)CrossRef
6.
go back to reference Y.G. Yao, J.S. Tao, J.H. Zou, B. Zhang, T. Li, J.Q. Dai, M.W. Zhu, S. Wang, K.K. Fu, D. Henderson, E. Hitz, J.B. Peng, L.B. Hu, Light management in plastic-paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016)CrossRef Y.G. Yao, J.S. Tao, J.H. Zou, B. Zhang, T. Li, J.Q. Dai, M.W. Zhu, S. Wang, K.K. Fu, D. Henderson, E. Hitz, J.B. Peng, L.B. Hu, Light management in plastic-paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016)CrossRef
7.
go back to reference W. Hu, G. Chen, Y. Liu, Y.Y. Liu, B. Li, Z.Q. Fang, Transparent and hazy all-cellulose composite films with superior mechanical properties. ACS Sustain. Chem. Eng. 6(5), 6974–6980 (2018)CrossRef W. Hu, G. Chen, Y. Liu, Y.Y. Liu, B. Li, Z.Q. Fang, Transparent and hazy all-cellulose composite films with superior mechanical properties. ACS Sustain. Chem. Eng. 6(5), 6974–6980 (2018)CrossRef
8.
go back to reference Z.Q. Fang, H.L. Zhu, C. Preston, X.G. Han, Y.Y. Li, S.W. Lee, X.S. Chai, G. Chen, L.B. Hu, Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J. Mater. Chem. C 1(39), 6191–6197 (2013)CrossRef Z.Q. Fang, H.L. Zhu, C. Preston, X.G. Han, Y.Y. Li, S.W. Lee, X.S. Chai, G. Chen, L.B. Hu, Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J. Mater. Chem. C 1(39), 6191–6197 (2013)CrossRef
9.
go back to reference Z.Z. Li, W.X. Liu, F.X. Guan, G.D. Li, Z. Song, D.H. Yu, H.L. Wang, H. Liu, Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohyd. Polym. 214, 26–33 (2019)CrossRef Z.Z. Li, W.X. Liu, F.X. Guan, G.D. Li, Z. Song, D.H. Yu, H.L. Wang, H. Liu, Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohyd. Polym. 214, 26–33 (2019)CrossRef
10.
go back to reference H.L. Zhu, Z.Q. Fang, Z. Wang, J.Q. Dai, Y.G. Yao, F. Shen, C. Preston, W.X. Wu, P. Peng, N. Jang, Q.K. Yu, Z.F. Yu, L.B. Hu, Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10(1), 1369–1377 (2016)CrossRef H.L. Zhu, Z.Q. Fang, Z. Wang, J.Q. Dai, Y.G. Yao, F. Shen, C. Preston, W.X. Wu, P. Peng, N. Jang, Q.K. Yu, Z.F. Yu, L.B. Hu, Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10(1), 1369–1377 (2016)CrossRef
11.
go back to reference T. Nishino, N. Arimoto, All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9), 2712–2716 (2007)CrossRef T. Nishino, N. Arimoto, All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9), 2712–2716 (2007)CrossRef
12.
go back to reference F.M. Qin, Z.Q. Fang, J. Zhou, C. Sun, K. Chen, Z.X. Ding, G.H. Li, X. Qiu, Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: performance and mechanism. Biomacromolecules 20(12), 4466–4475 (2019)CrossRef F.M. Qin, Z.Q. Fang, J. Zhou, C. Sun, K. Chen, Z.X. Ding, G.H. Li, X. Qiu, Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: performance and mechanism. Biomacromolecules 20(12), 4466–4475 (2019)CrossRef
13.
go back to reference P.P. Zhou, P.H. Zhu, G. Chen, Y. Liu, Y.D. Kuang, Y.Y. Liu, Z.Q. Fang, A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species. Cellulose 25(3), 2051–2061 (2018)CrossRef P.P. Zhou, P.H. Zhu, G. Chen, Y. Liu, Y.D. Kuang, Y.Y. Liu, Z.Q. Fang, A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species. Cellulose 25(3), 2051–2061 (2018)CrossRef
14.
go back to reference M. Nogi, S. Iwamoto, A.N. Nakagaito, H. Yano, Optically transparent nanofiber paper. Adv. Mater. 21(16), 1595–1598 (2009)CrossRef M. Nogi, S. Iwamoto, A.N. Nakagaito, H. Yano, Optically transparent nanofiber paper. Adv. Mater. 21(16), 1595–1598 (2009)CrossRef
15.
go back to reference W.S. Yang, L. Jiao, D.Y. Min, Z.L. Liu, H.Q. Dai, Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv. 7(17), 10463–10468 (2017)CrossRef W.S. Yang, L. Jiao, D.Y. Min, Z.L. Liu, H.Q. Dai, Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv. 7(17), 10463–10468 (2017)CrossRef
16.
go back to reference C. Jia, C.J. Chen, R.Y. Mi, T. Li, J. Dai, Z. Yang, Y. Pei, S.M. He, H.Y. Bian, S.H. Jang, J.Y. Zhu, B. Yang, L.B. Hu, Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019)CrossRef C. Jia, C.J. Chen, R.Y. Mi, T. Li, J. Dai, Z. Yang, Y. Pei, S.M. He, H.Y. Bian, S.H. Jang, J.Y. Zhu, B. Yang, L.B. Hu, Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019)CrossRef
17.
go back to reference R.Y. Mi, T. Li, D. Dalgo, C.J. Chen, Y.D. Kuang, S.M. He, X.P. Zhao, W.Q. Xie, W.T. Gan, J.Y. Zhu, J. Srebric, R.G. Yang, L.B. Hu, A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv. Funct. Mater. 30(1), 1907511 (2020)CrossRef R.Y. Mi, T. Li, D. Dalgo, C.J. Chen, Y.D. Kuang, S.M. He, X.P. Zhao, W.Q. Xie, W.T. Gan, J.Y. Zhu, J. Srebric, R.G. Yang, L.B. Hu, A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv. Funct. Mater. 30(1), 1907511 (2020)CrossRef
18.
go back to reference M.W. Zhu, Y.L. Wang, S.Z. Zhu, L.S. Xu, C. Jia, J.Q. Dai, J.W. Song, Y.G. Yao, Y.B. Wang, Y.F. Li, D. Henderson, W. Luo, H. Li, M.L. Minus, T. Li, L.B. Hu, Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 29(21), 1606284 (2017)CrossRef M.W. Zhu, Y.L. Wang, S.Z. Zhu, L.S. Xu, C. Jia, J.Q. Dai, J.W. Song, Y.G. Yao, Y.B. Wang, Y.F. Li, D. Henderson, W. Luo, H. Li, M.L. Minus, T. Li, L.B. Hu, Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 29(21), 1606284 (2017)CrossRef
19.
go back to reference Z.Q. Fang, H.L. Zhang, S. Qiu, Y.D. Kuang, J. Zhou, Y. Lan, C. Sun, G.H. Li, S.Q. Gong, Z.Q. Ma, Versatile wood cellulose for biodegradable electronics. Adv. Mater. Technol. 6(2), 2000928 (2021)CrossRef Z.Q. Fang, H.L. Zhang, S. Qiu, Y.D. Kuang, J. Zhou, Y. Lan, C. Sun, G.H. Li, S.Q. Gong, Z.Q. Ma, Versatile wood cellulose for biodegradable electronics. Adv. Mater. Technol. 6(2), 2000928 (2021)CrossRef
20.
go back to reference C. Preston, Z. Fang, J. Murray, H.L. Zhu, J.Q. Dai, J.N. Munday, L.B. Hu, Silver nanowire transparent conducting paper-based electrode with high optical haze. J. Mater. Chem. C 2(7), 1248–1254 (2014)CrossRef C. Preston, Z. Fang, J. Murray, H.L. Zhu, J.Q. Dai, J.N. Munday, L.B. Hu, Silver nanowire transparent conducting paper-based electrode with high optical haze. J. Mater. Chem. C 2(7), 1248–1254 (2014)CrossRef
21.
go back to reference L.B. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z.C. Ruan, S.H. Fan, J.T. Bloking, M.D. Mcgehee, L. Wågberg, Y. Cui, Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6(2), 513–518 (2013)CrossRef L.B. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z.C. Ruan, S.H. Fan, J.T. Bloking, M.D. Mcgehee, L. Wågberg, Y. Cui, Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6(2), 513–518 (2013)CrossRef
22.
go back to reference H.L. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z.C. Ruan, L.B. Hu, Transparent nanopaper with tailored optical properties. Nanoscale 5(9), 3787 (2013)CrossRef H.L. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z.C. Ruan, L.B. Hu, Transparent nanopaper with tailored optical properties. Nanoscale 5(9), 3787 (2013)CrossRef
23.
go back to reference X.Z. Xu, J. Zhou, L. Jiang, G. Lubineau, T. Ng, B.S. Ooi, H.Y. Liao, C. Shen, L. Chen, J.Y. Zhu, Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8(24), 12294–12306 (2016)CrossRef X.Z. Xu, J. Zhou, L. Jiang, G. Lubineau, T. Ng, B.S. Ooi, H.Y. Liao, C. Shen, L. Chen, J.Y. Zhu, Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8(24), 12294–12306 (2016)CrossRef
24.
go back to reference Z.Q. Fang, H.L. Zhu, W. Bao, C. Preston, Z. Liu, J.Q. Dai, Y.Y. Li, L.B. Hu, Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 7(10), 3313–3319 (2014)CrossRef Z.Q. Fang, H.L. Zhu, W. Bao, C. Preston, Z. Liu, J.Q. Dai, Y.Y. Li, L.B. Hu, Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 7(10), 3313–3319 (2014)CrossRef
25.
go back to reference M.C. Hsieh, H. Koga, K. Suganuma, M. Nogi, Hazy transparent cellulose nanopaper. Sci. Rep. 7(1), 41590 (2017)CrossRef M.C. Hsieh, H. Koga, K. Suganuma, M. Nogi, Hazy transparent cellulose nanopaper. Sci. Rep. 7(1), 41590 (2017)CrossRef
26.
go back to reference S. Chen, Y.J. Song, F. Xu, Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain. Chem. Eng. 6(4), 5173–5181 (2018)CrossRef S. Chen, Y.J. Song, F. Xu, Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain. Chem. Eng. 6(4), 5173–5181 (2018)CrossRef
27.
go back to reference W. Wu, N.G. Tassi, H.L. Zhu, Z.Q. Fang, L.B. Hu, Nanocellulose-based translucent diffuser for optoelectronic device applications with dramatic improvement of light coupling. ACS Appl. Mater. Interfaces 7(48), 26860–26864 (2015)CrossRef W. Wu, N.G. Tassi, H.L. Zhu, Z.Q. Fang, L.B. Hu, Nanocellulose-based translucent diffuser for optoelectronic device applications with dramatic improvement of light coupling. ACS Appl. Mater. Interfaces 7(48), 26860–26864 (2015)CrossRef
28.
go back to reference H.L. Ning, Y. Zeng, Y. Kuang, Z.K. Zheng, P.P. Zhou, R.H. Yao, H.K. Zhang, W.Z. Bao, G. Chen, Z.Q. Fang, J.B. Peng, Room-temperature fabrication of high-performance amorphous In-Ga-Zn-O/Al2O3 thin-film transistors on ultrasmooth and clear nanopaper. ACS Appl. Mater. Interfaces 9(33), 27792–27800 (2017)CrossRef H.L. Ning, Y. Zeng, Y. Kuang, Z.K. Zheng, P.P. Zhou, R.H. Yao, H.K. Zhang, W.Z. Bao, G. Chen, Z.Q. Fang, J.B. Peng, Room-temperature fabrication of high-performance amorphous In-Ga-Zn-O/Al2O3 thin-film transistors on ultrasmooth and clear nanopaper. ACS Appl. Mater. Interfaces 9(33), 27792–27800 (2017)CrossRef
29.
go back to reference M. Eder, S. Amini, P. Fratzl, Biological composites-complex structures for functional diversity. Science 362(6414), 543–547 (2018)CrossRef M. Eder, S. Amini, P. Fratzl, Biological composites-complex structures for functional diversity. Science 362(6414), 543–547 (2018)CrossRef
30.
go back to reference S. Vignolini, N. Bruns, Bioinspiration across all length scales of materials. Adv. Mater. 30(19), 1801687 (2018)CrossRef S. Vignolini, N. Bruns, Bioinspiration across all length scales of materials. Adv. Mater. 30(19), 1801687 (2018)CrossRef
31.
go back to reference R.M. Parker, G. Guidetti, C.A. Williams, T.H. Zhao, A. Narkevicius, S. Vignolini, B. Frka-Petesic, The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv. Mater. 30(19), 1704477 (2018)CrossRef R.M. Parker, G. Guidetti, C.A. Williams, T.H. Zhao, A. Narkevicius, S. Vignolini, B. Frka-Petesic, The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv. Mater. 30(19), 1704477 (2018)CrossRef
32.
go back to reference Z.Q. Fang, G.Y. Hou, C.J. Chen, L.B. Hu, Nanocellulose-based films and their emerging applications. Curr. Opin. Solid State Mater. Sci. 23(4), 100764 (2019)CrossRef Z.Q. Fang, G.Y. Hou, C.J. Chen, L.B. Hu, Nanocellulose-based films and their emerging applications. Curr. Opin. Solid State Mater. Sci. 23(4), 100764 (2019)CrossRef
33.
go back to reference R.H. Marchessault, F.F. Morehead, N.M. Walter, Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686), 632–633 (1959)CrossRef R.H. Marchessault, F.F. Morehead, N.M. Walter, Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686), 632–633 (1959)CrossRef
34.
go back to reference J.P.F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, P.J. Hyun, G. Scalia, L. Bergström, Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6(1), e80 (2014)CrossRef J.P.F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, P.J. Hyun, G. Scalia, L. Bergström, Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6(1), e80 (2014)CrossRef
35.
go back to reference J.A. Kelly, M. Giese, K.E. Shopsowitz, W.Y. Hamad, M.J. Maclachlan, The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47(4), 1088–1096 (2014)CrossRef J.A. Kelly, M. Giese, K.E. Shopsowitz, W.Y. Hamad, M.J. Maclachlan, The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47(4), 1088–1096 (2014)CrossRef
36.
go back to reference M.C. Xu, W. Li, C.H. Ma, H.P. Yu, Y.Q. Wu, Y.G. Wang, Z.J. Chen, J. Li, S.X. Liu, Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J. Mater. Chem. C 6(20), 5391–5400 (2018)CrossRef M.C. Xu, W. Li, C.H. Ma, H.P. Yu, Y.Q. Wu, Y.G. Wang, Z.J. Chen, J. Li, S.X. Liu, Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J. Mater. Chem. C 6(20), 5391–5400 (2018)CrossRef
37.
go back to reference Y.D. He, Z.L. Zhang, J. Xue, X.H. Wang, F. Song, X.L. Wang, L.L. Zhu, Y.Z. Wang, Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl. Mater. Interfaces 10(6), 5805–5811 (2018)CrossRef Y.D. He, Z.L. Zhang, J. Xue, X.H. Wang, F. Song, X.L. Wang, L.L. Zhu, Y.Z. Wang, Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl. Mater. Interfaces 10(6), 5805–5811 (2018)CrossRef
38.
go back to reference B.C. Wang, A. Walther, Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9(11), 10637–10646 (2015)CrossRef B.C. Wang, A. Walther, Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9(11), 10637–10646 (2015)CrossRef
39.
go back to reference Y.Y. Cao, W.Y. Hamad, M.J. Maclachlan, Broadband circular polarizing film based on chiral nematic liquid crystals. Adv. Opt. Mater. 6(17), 1800412 (2018)CrossRef Y.Y. Cao, W.Y. Hamad, M.J. Maclachlan, Broadband circular polarizing film based on chiral nematic liquid crystals. Adv. Opt. Mater. 6(17), 1800412 (2018)CrossRef
40.
go back to reference A.G. Dumanli, G. Kamita, J. Landman, H. Kooij, V. Der, B.J. Glover, J.J. Baumberg, U. Steiner, S. Vignolini, Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv. Opt. Mater. 2(7), 646–650 (2014)CrossRef A.G. Dumanli, G. Kamita, J. Landman, H. Kooij, V. Der, B.J. Glover, J.J. Baumberg, U. Steiner, S. Vignolini, Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv. Opt. Mater. 2(7), 646–650 (2014)CrossRef
41.
go back to reference G. Kamita, B. Frka-Petesic, A. Allard, M. Dargaud, K. King, A.G. Dumanli, S. Vignolini, Biocompatible and sustainable optical strain sensors for large-area applications. Adv. Opt. Mater. 4(12), 1950–1954 (2016)CrossRef G. Kamita, B. Frka-Petesic, A. Allard, M. Dargaud, K. King, A.G. Dumanli, S. Vignolini, Biocompatible and sustainable optical strain sensors for large-area applications. Adv. Opt. Mater. 4(12), 1950–1954 (2016)CrossRef
42.
go back to reference B. Frka-Petesic, G. Guidetti, G. Kamita, S. Vignolini, Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29(32), 1701469 (2017)CrossRef B. Frka-Petesic, G. Guidetti, G. Kamita, S. Vignolini, Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29(32), 1701469 (2017)CrossRef
43.
go back to reference Z.W. Peng, Q.L. Lin, Y.-A.A. Tai, Y.H. Wang, Applications of cellulose nanomaterials in stimuli-responsive optics. J. Agric. Food Chem. 68(46), 12940–12955 (2020)CrossRef Z.W. Peng, Q.L. Lin, Y.-A.A. Tai, Y.H. Wang, Applications of cellulose nanomaterials in stimuli-responsive optics. J. Agric. Food Chem. 68(46), 12940–12955 (2020)CrossRef
44.
go back to reference A. Tran, C.E. Boott, M.J. Maclachlan, Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 32(41), 1905876 (2020)CrossRef A. Tran, C.E. Boott, M.J. Maclachlan, Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 32(41), 1905876 (2020)CrossRef
45.
go back to reference K. Yao, Q.J. Meng, V. Bulone, Q. Zhou, Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29(28), 1701323 (2017)CrossRef K. Yao, Q.J. Meng, V. Bulone, Q. Zhou, Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29(28), 1701323 (2017)CrossRef
46.
go back to reference C.L. Duan, Z. Cheng, B. Wang, J.S. Zeng, J. Xu, J.P. Li, W.H. Gao, K.F. Chen, Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 17(30), 2007306 (2021)CrossRef C.L. Duan, Z. Cheng, B. Wang, J.S. Zeng, J. Xu, J.P. Li, W.H. Gao, K.F. Chen, Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 17(30), 2007306 (2021)CrossRef
47.
go back to reference H.Z. Zheng, W.R. Li, W. Li, X.J. Wang, Z.Y. Tang, S.X. Zhang, Y. Xu, Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 30(13), 1705948 (2018)CrossRef H.Z. Zheng, W.R. Li, W. Li, X.J. Wang, Z.Y. Tang, S.X. Zhang, Y. Xu, Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 30(13), 1705948 (2018)CrossRef
48.
go back to reference S.N. Fernandes, P.L. Almeida, N. Monge, L.E. Aguirre, D. Reis, C.L.P. Oliveira, N.A.M.F. De, P. Pieranski, M.H. Godinho, Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29(2), 1603560 (2017)CrossRef S.N. Fernandes, P.L. Almeida, N. Monge, L.E. Aguirre, D. Reis, C.L.P. Oliveira, N.A.M.F. De, P. Pieranski, M.H. Godinho, Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29(2), 1603560 (2017)CrossRef
49.
go back to reference T.H. Wu, J.D. Li, J.T. Li, S.M. Ye, J. Wei, J.B. Guo, A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4(41), 9687–9696 (2016)CrossRef T.H. Wu, J.D. Li, J.T. Li, S.M. Ye, J. Wei, J.B. Guo, A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4(41), 9687–9696 (2016)CrossRef
50.
go back to reference J.A. De La Cruz, Q.K. Liu, B. Senyuk, A.W. Frazier, K. Peddireddy, I.I. Smalyukh, Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5(6), 2468–2477 (2018)CrossRef J.A. De La Cruz, Q.K. Liu, B. Senyuk, A.W. Frazier, K. Peddireddy, I.I. Smalyukh, Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5(6), 2468–2477 (2018)CrossRef
51.
go back to reference L. Cortese, L. Pattelli, F. Utel, S. Vignolini, M. Burresi, D.S. Wiersma, Anisotropic light transport in white beetle scales. Adv. Opt. Mater. 3(10), 1337–1341 (2015)CrossRef L. Cortese, L. Pattelli, F. Utel, S. Vignolini, M. Burresi, D.S. Wiersma, Anisotropic light transport in white beetle scales. Adv. Opt. Mater. 3(10), 1337–1341 (2015)CrossRef
52.
go back to reference B.D. Wilts, X.Y. Sheng, M. Holler, A. Diaz, M. Guizar-Sicairos, J. Raabe, R. Hoppe, S.H. Liu, R. Langford, O.D. Onelli, D.Y. Chen, S. Torquato, U. Steiner, C.G. Schroer, S. Vignolini, A. Sepe, Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. 30(19), 1702057 (2018)CrossRef B.D. Wilts, X.Y. Sheng, M. Holler, A. Diaz, M. Guizar-Sicairos, J. Raabe, R. Hoppe, S.H. Liu, R. Langford, O.D. Onelli, D.Y. Chen, S. Torquato, U. Steiner, C.G. Schroer, S. Vignolini, A. Sepe, Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. 30(19), 1702057 (2018)CrossRef
53.
go back to reference S. Caixeiro, M. Peruzzo, O.D. Onelli, S. Vignolini, R. Sapienza, Disordered cellulose-based nanostructures for enhanced light scattering. ACS Appl. Mater. Interfaces 9(9), 7885–7890 (2017)CrossRef S. Caixeiro, M. Peruzzo, O.D. Onelli, S. Vignolini, R. Sapienza, Disordered cellulose-based nanostructures for enhanced light scattering. ACS Appl. Mater. Interfaces 9(9), 7885–7890 (2017)CrossRef
54.
go back to reference T. Li, Y. Zhai, S.M. He, W.T. Gan, Z.Y. Wei, M. Heidarinejad, D. Dalgo, R.Y. Mi, X.P. Zhao, J.W. Song, J.Q. Dai, C.J. Chen, A. Aili, A. Vellore, A. Martini, R.G. Yang, J. Srebric, X.B. Yin, L.B. Hu, A radiative cooling structural material. Science 364(6442), 760–763 (2019)CrossRef T. Li, Y. Zhai, S.M. He, W.T. Gan, Z.Y. Wei, M. Heidarinejad, D. Dalgo, R.Y. Mi, X.P. Zhao, J.W. Song, J.Q. Dai, C.J. Chen, A. Aili, A. Vellore, A. Martini, R.G. Yang, J. Srebric, X.B. Yin, L.B. Hu, A radiative cooling structural material. Science 364(6442), 760–763 (2019)CrossRef
55.
go back to reference H.L. Zhu, Z.Q. Fang, C. Preston, Y.Y. Li, L.B. Hu, Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7(1), 269–287 (2014)CrossRef H.L. Zhu, Z.Q. Fang, C. Preston, Y.Y. Li, L.B. Hu, Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7(1), 269–287 (2014)CrossRef
56.
go back to reference Z.Q. Fang, H.L. Zhu, C. Preston, L.B. Hu, Development, application and commercialization of transparent paper. Transl. Mater. Res. 1(1), 015004 (2014)CrossRef Z.Q. Fang, H.L. Zhu, C. Preston, L.B. Hu, Development, application and commercialization of transparent paper. Transl. Mater. Res. 1(1), 015004 (2014)CrossRef
57.
go back to reference H.L. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu, G. Henriksson, M.E. Himmel, L.B. Hu, Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016)CrossRef H.L. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu, G. Henriksson, M.E. Himmel, L.B. Hu, Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016)CrossRef
58.
go back to reference J. Huang, H.L. Zhu, Y.C. Chen, C. Preston, K. Rohrbach, J. Cumings, L.B. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013)CrossRef J. Huang, H.L. Zhu, Y.C. Chen, C. Preston, K. Rohrbach, J. Cumings, L.B. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013)CrossRef
59.
go back to reference Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, N. Shimidzu, Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24(12), 1657–1663 (2014)CrossRef Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, N. Shimidzu, Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24(12), 1657–1663 (2014)CrossRef
60.
go back to reference D. Gaspar, S.N. Fernandes, A.G. De Oliveira, J.G. Fernandes, P. Grey, R.V. Pontes, L. Pereira, R. Martins, M.H. Godinho, E. Fortunato, Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25(9), 094008 (2014)CrossRef D. Gaspar, S.N. Fernandes, A.G. De Oliveira, J.G. Fernandes, P. Grey, R.V. Pontes, L. Pereira, R. Martins, M.H. Godinho, E. Fortunato, Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25(9), 094008 (2014)CrossRef
61.
go back to reference W.Z. Bao, Z.Q. Fang, J.Y. Wan, J.Q. Dai, H.L. Zhu, X.G. Han, X.F. Yang, C. Preston, L.B. Hu, Aqueous gating of van der Waals materials on bilayer nanopaper. ACS Nano 8(10), 10606–10612 (2014)CrossRef W.Z. Bao, Z.Q. Fang, J.Y. Wan, J.Q. Dai, H.L. Zhu, X.G. Han, X.F. Yang, C. Preston, L.B. Hu, Aqueous gating of van der Waals materials on bilayer nanopaper. ACS Nano 8(10), 10606–10612 (2014)CrossRef
62.
go back to reference C.Y. Wang, C. Fuentes-Hernandez, J.C. Liu, A. Dindar, S. Choi, J.P. Youngblood, R.J. Moon, B. Kippelen, Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Appl. Mater. Interfaces 7(8), 4804–4808 (2015)CrossRef C.Y. Wang, C. Fuentes-Hernandez, J.C. Liu, A. Dindar, S. Choi, J.P. Youngblood, R.J. Moon, B. Kippelen, Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Appl. Mater. Interfaces 7(8), 4804–4808 (2015)CrossRef
63.
go back to reference D.H. Ha, Z.Q. Fang, N.B. Zhitenev, Paper in electronic and optoelectronic devices. Adv. Electron. Mater. 4(5), 1700593 (2018)CrossRef D.H. Ha, Z.Q. Fang, N.B. Zhitenev, Paper in electronic and optoelectronic devices. Adv. Electron. Mater. 4(5), 1700593 (2018)CrossRef
64.
go back to reference Y.H. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 3(1), 1536 (2013)CrossRef Y.H. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 3(1), 1536 (2013)CrossRef
65.
go back to reference L. Gao, L.F. Chao, M.H. Hou, J. Liang, Y.H. Chen, H.D. Yu, W. Huang, Flexible, transparent nanocellulose paper-based perovskite solar cells. Npj Flex. Electron. 3(1), 4 (2019)CrossRef L. Gao, L.F. Chao, M.H. Hou, J. Liang, Y.H. Chen, H.D. Yu, W. Huang, Flexible, transparent nanocellulose paper-based perovskite solar cells. Npj Flex. Electron. 3(1), 4 (2019)CrossRef
66.
go back to reference M.H. Jung, N.M. Park, S.Y. Lee, Color tunable nanopaper solar cells using hybrid CH3NH3PbI3−XBrx perovskite. Sol. Energy 139, 458–466 (2016)CrossRef M.H. Jung, N.M. Park, S.Y. Lee, Color tunable nanopaper solar cells using hybrid CH3NH3PbI3−XBrx perovskite. Sol. Energy 139, 458–466 (2016)CrossRef
67.
go back to reference H.L. Zhu, Z. Xiao, D.T. Liu, Y.Y. Li, N.J. Weadock, Z.Q. Fang, J.S. Huang, L.B. Hu, Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6(7), 2105–2111 (2013)CrossRef H.L. Zhu, Z. Xiao, D.T. Liu, Y.Y. Li, N.J. Weadock, Z.Q. Fang, J.S. Huang, L.B. Hu, Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6(7), 2105–2111 (2013)CrossRef
68.
go back to reference Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69(11), 1958–1961 (2009)CrossRef Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69(11), 1958–1961 (2009)CrossRef
69.
go back to reference D.H. Ha, Z.Q. Fang, L.B. Hu, J.N. Munday, Paper-based anti-reflection coatings for photovoltaics. Adv. Energy Mater. 4(9), 1301804 (2014)CrossRef D.H. Ha, Z.Q. Fang, L.B. Hu, J.N. Munday, Paper-based anti-reflection coatings for photovoltaics. Adv. Energy Mater. 4(9), 1301804 (2014)CrossRef
70.
go back to reference D.H. Ha, J. Murray, Z.Q. Fang, L.B. Hu, J.N. Munday, Advanced broadband antireflection coatings based on cellulose microfiber paper. IEEE J. Photovolt. 5(2), 577–583 (2015)CrossRef D.H. Ha, J. Murray, Z.Q. Fang, L.B. Hu, J.N. Munday, Advanced broadband antireflection coatings based on cellulose microfiber paper. IEEE J. Photovolt. 5(2), 577–583 (2015)CrossRef
71.
go back to reference M.W. Zhu, T. Li, C.S. Davis, Y.G. Yao, J.Q. Dai, Y.B. Wang, F. Alqatari, J.W. Gilman, L.B. Hu, Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016)CrossRef M.W. Zhu, T. Li, C.S. Davis, Y.G. Yao, J.Q. Dai, Y.B. Wang, F. Alqatari, J.W. Gilman, L.B. Hu, Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016)CrossRef
72.
go back to reference C. Jia, T. Li, C.J. Chen, J.Q. Dai, I.M. Kierzewski, J.W. Song, Y.J. Li, C.P. Yang, C.W. Wang, L.B. Hu, Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366–373 (2017)CrossRef C. Jia, T. Li, C.J. Chen, J.Q. Dai, I.M. Kierzewski, J.W. Song, Y.J. Li, C.P. Yang, C.W. Wang, L.B. Hu, Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366–373 (2017)CrossRef
73.
go back to reference Y.Y. Li, M. Cheng, E. Jungstedt, B. Xu, L.C. Sun, L. Berglund, Optically transparent wood substrate for perovskite solar cells. ACS Sustain. Chem. Eng. 7(6), 6061–6067 (2019)CrossRef Y.Y. Li, M. Cheng, E. Jungstedt, B. Xu, L.C. Sun, L. Berglund, Optically transparent wood substrate for perovskite solar cells. ACS Sustain. Chem. Eng. 7(6), 6061–6067 (2019)CrossRef
74.
go back to reference H. Yi, S.-H. Lee, H. Ko, D. Lee, W.-G. Bae, T. Kim, D.S. Hwang, H.E. Jeong, Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 29(34), 1902720 (2019)CrossRef H. Yi, S.-H. Lee, H. Ko, D. Lee, W.-G. Bae, T. Kim, D.S. Hwang, H.E. Jeong, Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 29(34), 1902720 (2019)CrossRef
75.
go back to reference Z. Zhang, H. Chang, B.L. Xue, S.F. Zhang, X. Li, W.-K. Wong, K.C. Li, X.J. Zhu, Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose 25(1), 377–389 (2018)CrossRef Z. Zhang, H. Chang, B.L. Xue, S.F. Zhang, X. Li, W.-K. Wong, K.C. Li, X.J. Zhu, Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose 25(1), 377–389 (2018)CrossRef
76.
go back to reference E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horák, N. Pourreza, A. Merkoçi, Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015)CrossRef E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horák, N. Pourreza, A. Merkoçi, Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015)CrossRef
77.
go back to reference H. Wan, X.F. Li, L. Zhang, X.P. Li, P.F. Liu, Z.G. Jiang, Z.Z. Yu, Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks. ACS Appl. Mater. Interfaces 10(6), 5918–5925 (2018)CrossRef H. Wan, X.F. Li, L. Zhang, X.P. Li, P.F. Liu, Z.G. Jiang, Z.Z. Yu, Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks. ACS Appl. Mater. Interfaces 10(6), 5918–5925 (2018)CrossRef
78.
go back to reference W.B. Song, J.-K. Lee, M.S. Gong, K. Heo, W.-J. Chung, B.Y. Lee, Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl. Mater. Interfaces 10(12), 10353–10361 (2018)CrossRef W.B. Song, J.-K. Lee, M.S. Gong, K. Heo, W.-J. Chung, B.Y. Lee, Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl. Mater. Interfaces 10(12), 10353–10361 (2018)CrossRef
79.
go back to reference A.Q. Hou, H.H. Chen, C.W. Zheng, K.L. Xie, A.Q. Gao, Assembly of a fluorescent chiral photonic crystal membrane and its sensitive responses to multiple signals induced by small molecules. ACS Nano 14(6), 7380–7388 (2020)CrossRef A.Q. Hou, H.H. Chen, C.W. Zheng, K.L. Xie, A.Q. Gao, Assembly of a fluorescent chiral photonic crystal membrane and its sensitive responses to multiple signals induced by small molecules. ACS Nano 14(6), 7380–7388 (2020)CrossRef
80.
go back to reference O. Kose, A. Tran, L. Lewis, W.Y. Hamad, M.J. Maclachlan, Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat. Commun. 10(1), 510 (2019)CrossRef O. Kose, A. Tran, L. Lewis, W.Y. Hamad, M.J. Maclachlan, Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat. Commun. 10(1), 510 (2019)CrossRef
81.
go back to reference M. Kim, H. Lee, M.C. Krecker, D. Bukharina, D. Nepal, T.J. Bunning, V.V. Tsukruk, Switchable photonic bio-adhesive materials. Adv. Mater. 2021, 2103674 (2021)CrossRef M. Kim, H. Lee, M.C. Krecker, D. Bukharina, D. Nepal, T.J. Bunning, V.V. Tsukruk, Switchable photonic bio-adhesive materials. Adv. Mater. 2021, 2103674 (2021)CrossRef
Metadata
Title
Light Management of Nanocellulose Films
Authors
Zhiqiang Fang
Guanhui Li
Gaoyuan Hou
Xueqing Qiu
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-14043-3_6

Premium Partners