Skip to main content
Top
Published in: Steel in Translation 7/2020

01-07-2020

Liquid-Phase Boriding of High-Chromium Steel

Authors: Yu. F. Ivanov, V. E. Gromov, D. A. Romanov, O. V. Ivanova, A. D. Teresov

Published in: Steel in Translation | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural-phase states and tribological properties of 12Kh18N10T steel subjected to electroexplosive alloying (EPA) with titanium and boron and subsequent electron-beam processing in various modes in terms of the energy density of the electron beam and the duration of the exposure pulse have been analyzed using methods of modern physical materials science. It has been established that EPA of steel with titanium and boron leads to the formation of a surface layer with multiphase submicro-nanocrystalline structure, characterized by the presence of micropores, microcracks, and microcraters. Complex processing, combining EPA and subsequent irradiation with high-intensity pulsed electron beams, leads to the formation of 60-μm-thick multiphase submicro-nanocrystalline surface layer. It is shown that the phase composition of a surface layer of steel is determined by the mass ratio of titanium and boron during electroexplosive alloying. The microhardness of a modified layer is defined by the relative mass fraction of titanium borides in the surface layer and can be more than 18 times higher than the microhardness of steel in its initial state (before electroexplosive alloying). Modes of complex processing have been determined at which the surface layer containing exclusively titanium borides and intermetallic compounds based on titanium and iron is formed. The maximum (approximately 82% by weight) titanium boride content is observed when steel is processed in a regime with the highest mass of boron powder in the sample (mB = 87.5 mg; mTi/mB = 5.202). With a decrease in mass of boron powder, the relative content of borides in the surface layer of steel decreases. It was found that integrated processing of steel is accompanied by a sevenfold increase in microhardness of the surface layer and wear resistance of the steel increases by more than nine times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shulga, A.V., A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies, J. Nucl. Mater., 2013, vol. 434, nos. 1–3, pp. 133–140.CrossRef Shulga, A.V., A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies, J. Nucl. Mater., 2013, vol. 434, nos. 1–3, pp. 133–140.CrossRef
2.
go back to reference Ma, S. and Zhang, J., Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 2016, vol. 44, no. 1, pp. 54–62. Ma, S. and Zhang, J., Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 2016, vol. 44, no. 1, pp. 54–62.
3.
go back to reference Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., Liu, L., and Yan, J., Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel, J. Mater. Eng. Perform., 2011, vol. 20, no. 9, pp. 1658–1664.CrossRef Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., Liu, L., and Yan, J., Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel, J. Mater. Eng. Perform., 2011, vol. 20, no. 9, pp. 1658–1664.CrossRef
4.
go back to reference Saha, R. and Ray, R.K., Development of texture, microstructure, and grain boundary character distribution in a high-strength boron-added interstitial-free steel after severe cold rolling and annealing, Metall. Mater. Trans. A, 2009, vol. 40, no. 9, pp. 2160–2170.CrossRef Saha, R. and Ray, R.K., Development of texture, microstructure, and grain boundary character distribution in a high-strength boron-added interstitial-free steel after severe cold rolling and annealing, Metall. Mater. Trans. A, 2009, vol. 40, no. 9, pp. 2160–2170.CrossRef
5.
go back to reference Saha, R. and Ray, R.K., Microstructural and textural changes in a severely cold rolled boron-added interstitial-free steel, Scr. Mater., 2007, vol. 57, no. 3, pp. 841–844.CrossRef Saha, R. and Ray, R.K., Microstructural and textural changes in a severely cold rolled boron-added interstitial-free steel, Scr. Mater., 2007, vol. 57, no. 3, pp. 841–844.CrossRef
6.
go back to reference He, L., Liu, Y., Li, J., and Li, B.H., Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys, Mater. Des., 2012, vol. 36, no. 4, pp. 88–93.CrossRef He, L., Liu, Y., Li, J., and Li, B.H., Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys, Mater. Des., 2012, vol. 36, no. 4, pp. 88–93.CrossRef
7.
go back to reference Liu, Y., Li, B.H., Li, J., He, L., Gao, S.J., and Nieh, T.G., Effect of titanium on the ductilization of Fe–B alloys with high boron content, Mater. Lett., 2010, vol. 64, no. 11, pp. 1299–1301.CrossRef Liu, Y., Li, B.H., Li, J., He, L., Gao, S.J., and Nieh, T.G., Effect of titanium on the ductilization of Fe–B alloys with high boron content, Mater. Lett., 2010, vol. 64, no. 11, pp. 1299–1301.CrossRef
8.
go back to reference Samsonov, G.V., Markovskii, L.Ya., Zhigach, A.F., and Valyashko, M.G., Bor. Ego soedineniya i splavy (Boron Compounds and Alloys), Samsonov, G.V., Ed., Kiev: Akad. Nauk UkrSSR, 1960. Samsonov, G.V., Markovskii, L.Ya., Zhigach, A.F., and Valyashko, M.G., Bor. Ego soedineniya i splavy (Boron Compounds and Alloys), Samsonov, G.V., Ed., Kiev: Akad. Nauk UkrSSR, 1960.
9.
go back to reference Ren, X., Fu, H., Xing, J., and Yi, Y., Effect of solidification rate on microstructure and toughness of Ca–Ti modified high boron high speed steel, Mater. Sci. Eng., A, 2019, vol. 742, pp. 617–627.CrossRef Ren, X., Fu, H., Xing, J., and Yi, Y., Effect of solidification rate on microstructure and toughness of Ca–Ti modified high boron high speed steel, Mater. Sci. Eng., A, 2019, vol. 742, pp. 617–627.CrossRef
10.
go back to reference Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov. Uchebnik (Prospective Radiation-Beam Technologies for Materials Processing: Manual), Moscow: Kruglyi Stol, 2001. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov. Uchebnik (Prospective Radiation-Beam Technologies for Materials Processing: Manual), Moscow: Kruglyi Stol, 2001.
11.
go back to reference Koval’, N.N. and Ivanov, Yu.F., Nanostructuring of surfaces of metalloceramic and ceramic materials by electron-beams, Russ. Phys. J., 2008, vol. 51, no. 5, pp. 505–516.CrossRef Koval’, N.N. and Ivanov, Yu.F., Nanostructuring of surfaces of metalloceramic and ceramic materials by electron-beams, Russ. Phys. J., 2008, vol. 51, no. 5, pp. 505–516.CrossRef
12.
go back to reference Poate, J.M., Foti, G., and Jacobson, D.C., Surface Modification and Alloying: By Laser, Ion, and Electron Beams, New York: Springer, 1983.CrossRef Poate, J.M., Foti, G., and Jacobson, D.C., Surface Modification and Alloying: By Laser, Ion, and Electron Beams, New York: Springer, 1983.CrossRef
13.
go back to reference Shulov, V.A., Paikin, A.G., Novikov, A.S., et al., Sil’notochnye elektronnye impul’snye puchki dlya aviatsionnogo dvigatelestroeniya (High-Voltage Electronic Pulsed Beams for Aircraft Engines), Shulov, V.A., Novikov, A.S., and Engel’ko, V.I., Eds., Moscow: Artek, 2012. Shulov, V.A., Paikin, A.G., Novikov, A.S., et al., Sil’notochnye elektronnye impul’snye puchki dlya aviatsionnogo dvigatelestroeniya (High-Voltage Electronic Pulsed Beams for Aircraft Engines), Shulov, V.A., Novikov, A.S., and Engel’ko, V.I., Eds., Moscow: Artek, 2012.
14.
go back to reference Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Mosk. Gos. Univ., 2005. Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Mosk. Gos. Univ., 2005.
15.
go back to reference Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Astashinskii, V.M., and Kvasov, N.T., Modifikatsiya materialov kompressionnymi plazmennymi potokami (Modification of Materials by Compression Plasma Flows), Minsk: Bel. Gos. Univ., 2013. Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Astashinskii, V.M., and Kvasov, N.T., Modifikatsiya materialov kompressionnymi plazmennymi potokami (Modification of Materials by Compression Plasma Flows), Minsk: Bel. Gos. Univ., 2013.
16.
go back to reference Budovskikh, E.A., Martusevich, E.V., Nosarev, P.S., Gromov, V.E., and Sarychev, V.D., Osnovy tekhnologii obrabotki poverkhnosti materialov impul’snoi geterogennoi plazmoi (Theoretical Fundamentals of Materials Surface Treatment by Pulsed Heterogeneous Plasma), Novokuznetsk: Sib. Gos. Ind. Univ., 2002. Budovskikh, E.A., Martusevich, E.V., Nosarev, P.S., Gromov, V.E., and Sarychev, V.D., Osnovy tekhnologii obrabotki poverkhnosti materialov impul’snoi geterogennoi plazmoi (Theoretical Fundamentals of Materials Surface Treatment by Pulsed Heterogeneous Plasma), Novokuznetsk: Sib. Gos. Ind. Univ., 2002.
17.
go back to reference Bagautdinov, A.Ya., Budovskikh, E.A., Ivanov, Yu.F., and Gromov, V.E., Fizicheskie osnovy elektrovzryvnogo legirovaniya metallov i splavov (Physical Fundamentals of Electroexplosive Alloying of Metals and Alloys), Novokuznetsk: Sib. Gos. Ind. Univ., 2007. Bagautdinov, A.Ya., Budovskikh, E.A., Ivanov, Yu.F., and Gromov, V.E., Fizicheskie osnovy elektrovzryvnogo legirovaniya metallov i splavov (Physical Fundamentals of Electroexplosive Alloying of Metals and Alloys), Novokuznetsk: Sib. Gos. Ind. Univ., 2007.
18.
go back to reference Konovalov, S., Gromov, V., and Ivanov, Yu., Multilayer structure of Al–Si alloy after electro-explosion alloying with yttrium oxide powder, Mater. Res. Express, 2018, vol. 5, no. 11, art. ID 116520.CrossRef Konovalov, S., Gromov, V., and Ivanov, Yu., Multilayer structure of Al–Si alloy after electro-explosion alloying with yttrium oxide powder, Mater. Res. Express, 2018, vol. 5, no. 11, art. ID 116520.CrossRef
19.
go back to reference Romanov, D.A., Gromov, V.E., Budovskikh, E.A., and Ivanov, Yu.F., Regularities of structural phase states formation on surface of metals and alloys during electroexplosive alloying, Usp. Fiz. Met., 2015, vol. 16, no. 2, pp. 119–157.CrossRef Romanov, D.A., Gromov, V.E., Budovskikh, E.A., and Ivanov, Yu.F., Regularities of structural phase states formation on surface of metals and alloys during electroexplosive alloying, Usp. Fiz. Met., 2015, vol. 16, no. 2, pp. 119–157.CrossRef
20.
go back to reference Struktura, fazovyi sostav i svoistva poverkhnostnykh sloev titanovykh splavov posle elektrovzryvnogo legirovaniya i elektronno-puchkovoi obrabotki (Structure, Phase Composition and Properties of Surface Layers of Titanium Alloys after Electroexplosive Alloying and Electron-Beam Processing), Gromov, V.E., Ivanov, Yu.F., and Budovskikh, E.A., Eds., Novokuznetsk: Inter-Kuzbass, 2012. Struktura, fazovyi sostav i svoistva poverkhnostnykh sloev titanovykh splavov posle elektrovzryvnogo legirovaniya i elektronno-puchkovoi obrabotki (Structure, Phase Composition and Properties of Surface Layers of Titanium Alloys after Electroexplosive Alloying and Electron-Beam Processing), Gromov, V.E., Ivanov, Yu.F., and Budovskikh, E.A., Eds., Novokuznetsk: Inter-Kuzbass, 2012.
21.
go back to reference Sorokin, V.G., Volosnikova, A.V., Vyatkin, S.A., et al., Marochnik stalei i splavov (Grade Guide of Steels and Alloys), Sorokin, V.G., Ed., Moscow: Mashinostroenie, 1989. Sorokin, V.G., Volosnikova, A.V., Vyatkin, S.A., et al., Marochnik stalei i splavov (Grade Guide of Steels and Alloys), Sorokin, V.G., Ed., Moscow: Mashinostroenie, 1989.
22.
go back to reference Rotshtein, V., Ivanov, Yu., and Markov, A., Surface treatment of materials with low-energy, high-current electron beams, in Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Amsterdam: Elsevier, 2006, pp. 205–240. Rotshtein, V., Ivanov, Yu., and Markov, A., Surface treatment of materials with low-energy, high-current electron beams, in Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Amsterdam: Elsevier, 2006, pp. 205–240.
23.
go back to reference Krishtal, M.M., Yasnikov, I.S., Polunin, V.I., Filatov, A.M., and Ul’yanenkov, A.G., Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral’nyi analiz v primerakh prakticheskogo primeneniya (Scanning Electron Microscopy and X-Ray Spectral Analysis in Practice), Krishtal, M.M., Ed., Moscow: Tekhnosfera, 2009. Krishtal, M.M., Yasnikov, I.S., Polunin, V.I., Filatov, A.M., and Ul’yanenkov, A.G., Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral’nyi analiz v primerakh prakticheskogo primeneniya (Scanning Electron Microscopy and X-Ray Spectral Analysis in Practice), Krishtal, M.M., Ed., Moscow: Tekhnosfera, 2009.
24.
go back to reference Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.
25.
go back to reference Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metal Science), Moscow: Metallurgiya, 1973. Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metal Science), Moscow: Metallurgiya, 1973.
26.
go back to reference Tomas, G. and Goringe, M.J., Transmission Electron Microscopy of Materials, New York: Willey, 1979. Tomas, G. and Goringe, M.J., Transmission Electron Microscopy of Materials, New York: Willey, 1979.
27.
go back to reference Andrews, K.W., Dyson, D.J., and Keown, S.R., Interpretation of Electron Diffraction Patterns, London, 1968. Andrews, K.W., Dyson, D.J., and Keown, S.R., Interpretation of Electron Diffraction Patterns, London, 1968.
28.
go back to reference Transmission Electron Microscopy Characterization of Nanomaterials, Kumar, C.S.S.R., Ed., New York: Springer, 2014. Transmission Electron Microscopy Characterization of Nanomaterials, Kumar, C.S.S.R., Ed., New York: Springer, 2014.
29.
go back to reference Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Berlin: Springer, 2016. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Berlin: Springer, 2016.
30.
go back to reference Egerton, R.F., Physical Principles of Electron Microscopy, Berlin: Springer, 2016.CrossRef Egerton, R.F., Physical Principles of Electron Microscopy, Berlin: Springer, 2016.CrossRef
Metadata
Title
Liquid-Phase Boriding of High-Chromium Steel
Authors
Yu. F. Ivanov
V. E. Gromov
D. A. Romanov
O. V. Ivanova
A. D. Teresov
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 7/2020
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220070062

Other articles of this Issue 7/2020

Steel in Translation 7/2020 Go to the issue

Premium Partners