Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Literature Review

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter relevant background for the present work is reviewed covering some principles of gas-solid adsorption and the characteristics of promising groups of CO2 adsorbents for carbon capture and storage. The CO2 adsorption properties of layered double hydroxides (LDHs) and their derivatives produced upon thermal treatment (layered double oxides) are described in more detail. Additionally, the strategies reported so far to improve the adsorption performance of LDHs are discussed. The last part of the chapter focuses on hydrogen production highlighting the importance of process intensification by sorption-enhancement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The dependence of k and n on temperature is complex so they should not be extrapolated outside their range of validity. Usually \(\ln (k)\) and \(1/n\) depend linearly on temperature (Huang and Cho [14]).
 
2
In Eq. (2.17) the adsorbate accumulation in the gas phase, \(\varepsilon_{p} \partial c_{{i_{pore} }} /\partial t\) (where εp is the pellet porosity), has been neglected otherwise it appears on the right-hand side.
 
3
The term mass transfer zone (MTZ) refers to the section of the column where active adsorption takes place and it is commonly used to classify adsorption systems and to select appropriate models to describe their behaviour [3].
 
4
In post-combustion CO2 capture technologies CO2 is separated from a flue gas after the combustion of a fossil fuel (e.g. the removal of CO2 from coal-fired power plants). Pre-combustion CO2 capture refers to processes where CO2 is removed before the combustion of the fossil fuel (e.g. the fuel is converted to syngas and subsequently to a H2-rich stream from which CO2 is captured).
 
5
Metal nitrate and chloride salts are commonly used due to the low selectivity of LDHs towards these anions [59].
 
Literature
1.
go back to reference Yang, R. T. (1997). Gas separation by adsorption processes (Vol. 1). London, UK: Imperial College Press. Yang, R. T. (1997). Gas separation by adsorption processes (Vol. 1). London, UK: Imperial College Press.
2.
go back to reference Ponec, V., Knor, Z., & Cerny, S. (1974). Adsorption on solids. Prague, Czech Republic: London Butterworths. Ponec, V., Knor, Z., & Cerny, S. (1974). Adsorption on solids. Prague, Czech Republic: London Butterworths.
3.
go back to reference Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. NY, USA: Wiley. Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. NY, USA: Wiley.
4.
go back to reference Suzuki, M. (1990). Adsorption engineering. Tokyo, Japan: Kodansha. Suzuki, M. (1990). Adsorption engineering. Tokyo, Japan: Kodansha.
5.
go back to reference Ruthven, D. M., Farooq, S., & Knaebel, K. S. (1994). Pressure swing adsorption. NY, USA: VCH Publishers. Ruthven, D. M., Farooq, S., & Knaebel, K. S. (1994). Pressure swing adsorption. NY, USA: VCH Publishers.
6.
go back to reference Do, D. D. (1998). Adsorption analysis: Equilibria and Kinetics. London, UK: Imperial College Press. Do, D. D. (1998). Adsorption analysis: Equilibria and Kinetics. London, UK: Imperial College Press.
7.
go back to reference Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders & porous solids. London, UK: Academic Press. Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders & porous solids. London, UK: Academic Press.
8.
go back to reference Keller, J. U., & Staudt, R. (2005). Gas adsorption equilibria: Experimental methods and adsorption isotherms. Boston, USA: Springer. Keller, J. U., & Staudt, R. (2005). Gas adsorption equilibria: Experimental methods and adsorption isotherms. Boston, USA: Springer.
9.
go back to reference Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2001). Introduction to chemical engineering thermodynamics. London, UK: McGraw-Hill. Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2001). Introduction to chemical engineering thermodynamics. London, UK: McGraw-Hill.
10.
go back to reference Sircar, S., Mohr, R., Ristic, C., & Rao, M. B. (1999). Isosteric heat of adsorption: Theory and experiment. The Journal of Physical Chemistry B, 103(31), 6539–6546.CrossRef Sircar, S., Mohr, R., Ristic, C., & Rao, M. B. (1999). Isosteric heat of adsorption: Theory and experiment. The Journal of Physical Chemistry B, 103(31), 6539–6546.CrossRef
11.
go back to reference Attard, G., & Barnes, C. (2009). Surfaces (Vol. 59). NY, USA: Oxford University Press. Attard, G., & Barnes, C. (2009). Surfaces (Vol. 59). NY, USA: Oxford University Press.
12.
go back to reference Koumpouras, G. (2007). Mathematical modelling of a low temperature hydrogen production process with in situ CO2 capture. Ph.D. thesis, Imperial College London, London, UK. Koumpouras, G. (2007). Mathematical modelling of a low temperature hydrogen production process with in situ CO2 capture. Ph.D. thesis, Imperial College London, London, UK.
13.
14.
go back to reference Huang, T.-C., & Cho, L.-T. (1989). Relationships between constants of the Freundlich equation and temperature for gaseous adsorption. Chemical Engineering Communications, 75(1), 181–194.CrossRef Huang, T.-C., & Cho, L.-T. (1989). Relationships between constants of the Freundlich equation and temperature for gaseous adsorption. Chemical Engineering Communications, 75(1), 181–194.CrossRef
15.
go back to reference Halsey, G., & Taylor, H. S. (1947). The adsorption of hydrogen on tungsten powders. The Journal of Chemical Physics, 15(9), 624–630.CrossRef Halsey, G., & Taylor, H. S. (1947). The adsorption of hydrogen on tungsten powders. The Journal of Chemical Physics, 15(9), 624–630.CrossRef
16.
go back to reference Belmabkhout, Y., Frère, M., & Weireld, G. D. (2004). High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods. Measurement Science & Technology, 15(5), 848.CrossRef Belmabkhout, Y., Frère, M., & Weireld, G. D. (2004). High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods. Measurement Science & Technology, 15(5), 848.CrossRef
17.
go back to reference Capezzuoli, F. (2006). Carbon dioxide adsorption on porous materials and its catalytic hydrogenation in supercritical phase. Ph.D. thesis, Imperial College London, London, UK. Capezzuoli, F. (2006). Carbon dioxide adsorption on porous materials and its catalytic hydrogenation in supercritical phase. Ph.D. thesis, Imperial College London, London, UK.
18.
go back to reference Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef
19.
go back to reference Du, H., Ebner, A. D., & Ritter, J. A. (2010). Temperature dependence of the nonequilibrium kinetic model that describes the adsorption and desorption behavior of CO2 in K-promoted HTlc. Industrial and Engineering Chemistry Research, 49(7), 3328–3336.CrossRef Du, H., Ebner, A. D., & Ritter, J. A. (2010). Temperature dependence of the nonequilibrium kinetic model that describes the adsorption and desorption behavior of CO2 in K-promoted HTlc. Industrial and Engineering Chemistry Research, 49(7), 3328–3336.CrossRef
20.
go back to reference Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef
21.
go back to reference Wood, G. O. (2002). Quantification and application of skew of breakthrough curves for gases and vapors eluting from activated carbon beds. Carbon, 40(11), 1883–1890.CrossRef Wood, G. O. (2002). Quantification and application of skew of breakthrough curves for gases and vapors eluting from activated carbon beds. Carbon, 40(11), 1883–1890.CrossRef
22.
go back to reference Soares, J., Casarin, G., José, H., Moreira, R. P. M., & Rodrigues, A. (2005). Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite. Adsorption, 11(1), 237–241.CrossRef Soares, J., Casarin, G., José, H., Moreira, R. P. M., & Rodrigues, A. (2005). Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite. Adsorption, 11(1), 237–241.CrossRef
23.
go back to reference Lee, K. B., Verdooren, A., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. Journal of Colloid and Interface Science, 308(1), 30–39.CrossRef Lee, K. B., Verdooren, A., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. Journal of Colloid and Interface Science, 308(1), 30–39.CrossRef
24.
go back to reference Kolade, M. A. (2008). Adsorptive reactor technology for VOC abatement. PhD thesis, Imperial College London, London, UK. Kolade, M. A. (2008). Adsorptive reactor technology for VOC abatement. PhD thesis, Imperial College London, London, UK.
25.
go back to reference Halmann, M. M., & Steinberg, M. (1999). Greenhouse gas carbon dioxide mitigation: Science and technology. Boca Raton, FL: Lewis Publishers. Halmann, M. M., & Steinberg, M. (1999). Greenhouse gas carbon dioxide mitigation: Science and technology. Boca Raton, FL: Lewis Publishers.
26.
go back to reference Yong, Z., Mata, V., & Rodrigues, A. R. E. (2002). Adsorption of carbon dioxide at high temperature—a review. Separation and Purification Technology, 26(2–3), 195–205. Yong, Z., Mata, V., & Rodrigues, A. R. E. (2002). Adsorption of carbon dioxide at high temperature—a review. Separation and Purification Technology, 26(2–3), 195–205.
27.
go back to reference Siriwardane, R. V., Shen, M.-S., Fisher, E. P., & Losch, J. (2005). Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels, 19(3), 1153–1159.CrossRef Siriwardane, R. V., Shen, M.-S., Fisher, E. P., & Losch, J. (2005). Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels, 19(3), 1153–1159.CrossRef
28.
go back to reference Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., & Todd, R. (2008). Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption, 14(4–5), 575–582.CrossRef Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., & Todd, R. (2008). Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption, 14(4–5), 575–582.CrossRef
29.
go back to reference Chen, C., Park, D.-W., & Ahn, W.-S. (2014). CO2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 292, 63–67.CrossRef Chen, C., Park, D.-W., & Ahn, W.-S. (2014). CO2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 292, 63–67.CrossRef
30.
go back to reference Guo, B., Chang, L., & Xie, K. (2006). Adsorption of carbon dioxide on activated carbon. Journal of Natural Gas Chemistry, 15(3), 223–229.CrossRef Guo, B., Chang, L., & Xie, K. (2006). Adsorption of carbon dioxide on activated carbon. Journal of Natural Gas Chemistry, 15(3), 223–229.CrossRef
31.
go back to reference Drage, T. C., Blackman, J. M., Pevida, C., & Snape, C. E. (2009). Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 23(5), 2790–2796.CrossRef Drage, T. C., Blackman, J. M., Pevida, C., & Snape, C. E. (2009). Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 23(5), 2790–2796.CrossRef
32.
go back to reference Yin, G., Liu, Z., Liu, Q., & Wu, W. (2013). The role of different properties of activated carbon in CO2 adsorption. Chemical Engineering Journal, 230, 133–140.CrossRef Yin, G., Liu, Z., Liu, Q., & Wu, W. (2013). The role of different properties of activated carbon in CO2 adsorption. Chemical Engineering Journal, 230, 133–140.CrossRef
33.
go back to reference Watabe, T., Nishizaka, Y., Kazama, S., & Yogo, K. (2013). Development of amine-modified solid sorbents for postcombustion CO2 capture. Energy Procedia, 37, 199–204.CrossRef Watabe, T., Nishizaka, Y., Kazama, S., & Yogo, K. (2013). Development of amine-modified solid sorbents for postcombustion CO2 capture. Energy Procedia, 37, 199–204.CrossRef
34.
go back to reference Dutcher, B., Fan, M., Cui, S., Shen, X.-D., Kong, Y., Russell, A. G., et al. (2013). Characterization and stability of a new, high-capacity amine-functionalized CO2 sorbent. International Journal of Greenhouse Gas Control, 18, 51–56.CrossRef Dutcher, B., Fan, M., Cui, S., Shen, X.-D., Kong, Y., Russell, A. G., et al. (2013). Characterization and stability of a new, high-capacity amine-functionalized CO2 sorbent. International Journal of Greenhouse Gas Control, 18, 51–56.CrossRef
35.
go back to reference Le, Y., Guo, D., Cheng, B., & Yu, J. (2013). Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. Journal of Colloid and Interface Science, 408, 173–180.CrossRef Le, Y., Guo, D., Cheng, B., & Yu, J. (2013). Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. Journal of Colloid and Interface Science, 408, 173–180.CrossRef
36.
go back to reference Yazaydın, A. Ö., Benin, A. I., Faheem, S. A., Jakubczak, P., Low, J. J., Willis, R. R., & Snurr, R. Q. (2009). Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials, 21(8), 1425–1430.CrossRef Yazaydın, A. Ö., Benin, A. I., Faheem, S. A., Jakubczak, P., Low, J. J., Willis, R. R., & Snurr, R. Q. (2009). Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials, 21(8), 1425–1430.CrossRef
37.
go back to reference Li, J.-R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H.-K., et al. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15–16), 1791–1823.CrossRef Li, J.-R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H.-K., et al. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15–16), 1791–1823.CrossRef
38.
go back to reference Ye, S., Jiang, X., Ruan, L.-W., Liu, B., Wang, Y.-M., Zhu, J.-F., & Qiu, L.-G. (2013). Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 179, 191–197.CrossRef Ye, S., Jiang, X., Ruan, L.-W., Liu, B., Wang, Y.-M., Zhu, J.-F., & Qiu, L.-G. (2013). Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 179, 191–197.CrossRef
39.
go back to reference Yong, Z., Mata, V., & Rodrigues, A. (2001). Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7(1), 41–50.CrossRef Yong, Z., Mata, V., & Rodrigues, A. (2001). Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7(1), 41–50.CrossRef
40.
go back to reference Xiao, P., Wilson, S., Xiao, G., Singh, R., & Webley, P. (2009). Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia, 1(1), 631–638.CrossRef Xiao, P., Wilson, S., Xiao, G., Singh, R., & Webley, P. (2009). Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia, 1(1), 631–638.CrossRef
41.
go back to reference Lee, S. C., Chae, H. J., Lee, S. J., Choi, B. Y., Yi, C. K., Lee, J. B., et al. (2008). Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environmental Science and Technology, 42(8), 2736–2741.CrossRef Lee, S. C., Chae, H. J., Lee, S. J., Choi, B. Y., Yi, C. K., Lee, J. B., et al. (2008). Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environmental Science and Technology, 42(8), 2736–2741.CrossRef
42.
go back to reference Bhagiyalakshmi, M., Lee, J. Y., & Jang, H. T. (2010). Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control, 4(1), 51–56.CrossRef Bhagiyalakshmi, M., Lee, J. Y., & Jang, H. T. (2010). Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control, 4(1), 51–56.CrossRef
43.
go back to reference Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef
44.
go back to reference Beaver, M., & Sircar, S. (2010). Adsorption technology for direct recovery of compressed, pure CO2 from a flue gas without pre-compression or pre-drying. Adsorption, 16(3), 103–111.CrossRef Beaver, M., & Sircar, S. (2010). Adsorption technology for direct recovery of compressed, pure CO2 from a flue gas without pre-compression or pre-drying. Adsorption, 16(3), 103–111.CrossRef
45.
go back to reference Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
46.
go back to reference Yong, Z., & Rodrigues, A. R. E. (2002) Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Conversion and Management, 43(14), 1865–1876. Yong, Z., & Rodrigues, A. R. E. (2002) Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Conversion and Management, 43(14), 1865–1876.
47.
go back to reference Xiong, R., Ida, J., & Lin, Y. S. (2003). Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science, 58(19), 4377–4385.CrossRef Xiong, R., Ida, J., & Lin, Y. S. (2003). Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science, 58(19), 4377–4385.CrossRef
48.
go back to reference Ochoa-Fernandez, E., Ronning, M., Yu, X., Grande, T., & Chen, D. (2007). Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Industrial and Engineering Chemistry Research, 47(2), 434–442.CrossRef Ochoa-Fernandez, E., Ronning, M., Yu, X., Grande, T., & Chen, D. (2007). Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Industrial and Engineering Chemistry Research, 47(2), 434–442.CrossRef
49.
go back to reference Iwan, A., Stephenson, H., Ketchie, W. C., & Lapkin, A. A. (2009). High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal, 146(2), 249–258.CrossRef Iwan, A., Stephenson, H., Ketchie, W. C., & Lapkin, A. A. (2009). High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal, 146(2), 249–258.CrossRef
50.
go back to reference Solieman, A. A. A., Dijkstra, J. W., Haije, W. G., Cobden, P. D., & van den Brink, R. W. (2009). Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming. International Journal of Greenhouse Gas Control, 3(4), 393–400.CrossRef Solieman, A. A. A., Dijkstra, J. W., Haije, W. G., Cobden, P. D., & van den Brink, R. W. (2009). Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming. International Journal of Greenhouse Gas Control, 3(4), 393–400.CrossRef
51.
go back to reference Dou, B., Song, Y., Liu, Y., & Feng, C. (2010). High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. Journal of Hazardous Materials, 183(1–3), 759–765.CrossRef Dou, B., Song, Y., Liu, Y., & Feng, C. (2010). High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. Journal of Hazardous Materials, 183(1–3), 759–765.CrossRef
52.
go back to reference Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., & Fennell, P. S. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research and Design, 89(6), 836–855.CrossRef Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., & Fennell, P. S. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research and Design, 89(6), 836–855.CrossRef
53.
go back to reference Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef
54.
go back to reference Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.CrossRef Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.CrossRef
55.
go back to reference van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water–gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water–gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef
56.
go back to reference Jang, H. M., Lee, K. B., Caram, H. S., & Sircar, S. (2012). High-purity hydrogen production through sorption enhanced water gas shift reaction using K2CO3-promoted hydrotalcite. Chemical Engineering Science, 73, 431–438.CrossRef Jang, H. M., Lee, K. B., Caram, H. S., & Sircar, S. (2012). High-purity hydrogen production through sorption enhanced water gas shift reaction using K2CO3-promoted hydrotalcite. Chemical Engineering Science, 73, 431–438.CrossRef
57.
go back to reference Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173–301.CrossRef Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173–301.CrossRef
58.
go back to reference Rousselot, I., Taviot-Guého, C., Leroux, F., Léone, P., Palvadeau, P., & Besse, J.-P. (2002). Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: Investigation of the series Ca2M3+(OH)6Cl·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-ray powder diffraction. Journal of Solid State Chemistry, 167(1), 137–144.CrossRef Rousselot, I., Taviot-Guého, C., Leroux, F., Léone, P., Palvadeau, P., & Besse, J.-P. (2002). Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: Investigation of the series Ca2M3+(OH)6Cl·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-ray powder diffraction. Journal of Solid State Chemistry, 167(1), 137–144.CrossRef
59.
go back to reference He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Layered double hydroxides (Vol. 119). Heidelberg, Germany: Springer. He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Layered double hydroxides (Vol. 119). Heidelberg, Germany: Springer.
60.
go back to reference Othman, M. R., Helwani, Z., & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry, 23(9), 335–346.CrossRef Othman, M. R., Helwani, Z., & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry, 23(9), 335–346.CrossRef
61.
go back to reference León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef
62.
go back to reference Gao, Y., Zhang, Z., Wu, J., Yi, X., Zheng, A., Umar, A., et al. (2013). Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides. Journal of Materials Chemistry A, 1(41), 12782–12790.CrossRef Gao, Y., Zhang, Z., Wu, J., Yi, X., Zheng, A., Umar, A., et al. (2013). Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides. Journal of Materials Chemistry A, 1(41), 12782–12790.CrossRef
63.
go back to reference Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef
64.
go back to reference Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Industrial and Engineering Chemistry Research, 45(18), 6387–6392.CrossRef Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2006). Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Industrial and Engineering Chemistry Research, 45(18), 6387–6392.CrossRef
65.
go back to reference Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial & Engineering Chemistry Research, 45(22), 7504–7509. Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial & Engineering Chemistry Research, 45(22), 7504–7509.
66.
go back to reference Wang, X. P., Yu, J. J., Cheng, J., Hao, Z. P., & Xu, Z. P. (2007). High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environmental Science and Technology, 42(2), 614–618.CrossRef Wang, X. P., Yu, J. J., Cheng, J., Hao, Z. P., & Xu, Z. P. (2007). High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environmental Science and Technology, 42(2), 614–618.CrossRef
67.
go back to reference Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef
68.
go back to reference Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., & Busca, G. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., & Busca, G. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55.
69.
go back to reference Pérez-Ramírez, J., Abelló, S., & van der Pers, N. M. (2007). Memory effect of activated Mg–Al hydrotalcite: In Situ XRD studies during decomposition and gas-phase reconstruction. Chemistry—A European Journal, 13(3), 870–878. Pérez-Ramírez, J., Abelló, S., & van der Pers, N. M. (2007). Memory effect of activated Mg–Al hydrotalcite: In Situ XRD studies during decomposition and gas-phase reconstruction. Chemistry—A European Journal, 13(3), 870–878.
70.
go back to reference Di Cosimo, J. I., Díez, V. K., & Apesteguía, C. R. (1996). Base catalysis for the synthesis of α, β-unsaturated ketones from the vapor-phase aldol condensation of acetone. Applied Catalysis, A: General, 137(1), 149–166.CrossRef Di Cosimo, J. I., Díez, V. K., & Apesteguía, C. R. (1996). Base catalysis for the synthesis of α, β-unsaturated ketones from the vapor-phase aldol condensation of acetone. Applied Catalysis, A: General, 137(1), 149–166.CrossRef
71.
go back to reference Tichit, D., & Coq, B. (2003). Catalysis by hydrotalcites and related materials. CATTECH, 7(6), 206–217.CrossRef Tichit, D., & Coq, B. (2003). Catalysis by hydrotalcites and related materials. CATTECH, 7(6), 206–217.CrossRef
72.
go back to reference Climent, M. J., Corma, A., Iborra, S., Epping, K., & Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316–326.CrossRef Climent, M. J., Corma, A., Iborra, S., Epping, K., & Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316–326.CrossRef
73.
go back to reference Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Groen, J. C., Sueiras, J. E., et al. (2005). Aldol condensations over reconstructed Mg–Al hydrotalcites: Structure-activity relationships related to the rehydration method. Chemistry—A European Journal, 11(2), 728–739.CrossRef Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Groen, J. C., Sueiras, J. E., et al. (2005). Aldol condensations over reconstructed Mg–Al hydrotalcites: Structure-activity relationships related to the rehydration method. Chemistry—A European Journal, 11(2), 728–739.CrossRef
74.
go back to reference Hibino, T., Yamashita, Y., Kosuge, K., & Tsunashima, A. (1995). Decarbonation behavior of Mg-Al-CO 3 hydrotalcite-like compounds during heat treatment. Clays and Clay Minerals, 43(4), 427–432.CrossRef Hibino, T., Yamashita, Y., Kosuge, K., & Tsunashima, A. (1995). Decarbonation behavior of Mg-Al-CO 3 hydrotalcite-like compounds during heat treatment. Clays and Clay Minerals, 43(4), 427–432.CrossRef
75.
go back to reference Yong, Z., Mata, V., & Rodrigues, A. E. (2000). Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial and Engineering Chemistry Research, 40(1), 204–209.CrossRef Yong, Z., Mata, V., & Rodrigues, A. E. (2000). Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial and Engineering Chemistry Research, 40(1), 204–209.CrossRef
76.
go back to reference Yang, W., Kim, Y., Liu, P. K. T., Sahimi, M., & Tsotsis, T. T. (2002). A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chemical Engineering Science, 57(15), 2945–2953.CrossRef Yang, W., Kim, Y., Liu, P. K. T., Sahimi, M., & Tsotsis, T. T. (2002). A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chemical Engineering Science, 57(15), 2945–2953.CrossRef
77.
go back to reference Auroux, A., & Gervasini, A. (1990). Microcalorimetric study of the acidity and basicity of metal oxide surfaces. The Journal of Physical Chemistry, 94(16), 6371–6379.CrossRef Auroux, A., & Gervasini, A. (1990). Microcalorimetric study of the acidity and basicity of metal oxide surfaces. The Journal of Physical Chemistry, 94(16), 6371–6379.CrossRef
78.
go back to reference Philipp, R., & Fujimoto, K. (1992). FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 96(22), 9035–9038.CrossRef Philipp, R., & Fujimoto, K. (1992). FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 96(22), 9035–9038.CrossRef
79.
go back to reference Di Cosimo, J. I., Dı́ez, V. K., Xu, M., Iglesia, E., & Apesteguı́a, C. R. (1998). Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis, 178(2), 499–510.CrossRef Di Cosimo, J. I., Dı́ez, V. K., Xu, M., Iglesia, E., & Apesteguı́a, C. R. (1998). Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis, 178(2), 499–510.CrossRef
80.
go back to reference Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef
81.
go back to reference Tsuji, M., Mao, G., Yoshida, T., & Tamaura, Y. (1993). Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. Journal of Materials Research, 8(05), 1137–1142.CrossRef Tsuji, M., Mao, G., Yoshida, T., & Tamaura, Y. (1993). Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. Journal of Materials Research, 8(05), 1137–1142.CrossRef
82.
go back to reference White, M., Iretski, A., Weigel, S., Chiang, R., & Brozozowski, J. (2006). Adsorbents, methods of preparation, and methods of use thereof. Google Patents. White, M., Iretski, A., Weigel, S., Chiang, R., & Brozozowski, J. (2006). Adsorbents, methods of preparation, and methods of use thereof. Google Patents.
83.
go back to reference Yavuz, C. T., Shinall, B. D., Iretskii, A. V., White, M. G., Golden, T., Atilhan, M., et al. (2009). Markedly improved CO2 capture efficiency and stability of gallium substituted hydrotalcites at elevated temperatures. Chemistry of Materials, 21(15), 3473–3475.CrossRef Yavuz, C. T., Shinall, B. D., Iretskii, A. V., White, M. G., Golden, T., Atilhan, M., et al. (2009). Markedly improved CO2 capture efficiency and stability of gallium substituted hydrotalcites at elevated temperatures. Chemistry of Materials, 21(15), 3473–3475.CrossRef
84.
go back to reference Wang, Q., Tay, H. H., Ng, D. J. W., Chen, L., Liu, Y., Chang, J., et al. (2010). The effect of trivalent cations on the performance of Mg–M–CO3 layered double hydroxides for high-temperature CO2 capture. ChemSusChem, 3(8), 965–973.CrossRef Wang, Q., Tay, H. H., Ng, D. J. W., Chen, L., Liu, Y., Chang, J., et al. (2010). The effect of trivalent cations on the performance of Mg–M–CO3 layered double hydroxides for high-temperature CO2 capture. ChemSusChem, 3(8), 965–973.CrossRef
85.
go back to reference Reijers, H. T. J., Valster-Schiermeier, S. E. A., Cobden, P. D., & van den Brink, R. W. (2005). Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial and Engineering Chemistry Research, 45(8), 2522–2530.CrossRef Reijers, H. T. J., Valster-Schiermeier, S. E. A., Cobden, P. D., & van den Brink, R. W. (2005). Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial and Engineering Chemistry Research, 45(8), 2522–2530.CrossRef
86.
go back to reference Yang, J.-I., & Kim, J.-N. (2006). Hydrotalcites for adsorption of CO2 at high temperature. Korean Journal of Chemical Engineering, 23(1), 77–80.CrossRef Yang, J.-I., & Kim, J.-N. (2006). Hydrotalcites for adsorption of CO2 at high temperature. Korean Journal of Chemical Engineering, 23(1), 77–80.CrossRef
87.
go back to reference Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Rodríguez, X., Sueiras, J. E., et al. (2005). Study of alkaline-doping agents on the performance of reconstructed Mg–Al hydrotalcites in aldol condensations. Applied Catalysis, A: General, 281(1–2), 191–198.CrossRef Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Rodríguez, X., Sueiras, J. E., et al. (2005). Study of alkaline-doping agents on the performance of reconstructed Mg–Al hydrotalcites in aldol condensations. Applied Catalysis, A: General, 281(1–2), 191–198.CrossRef
88.
go back to reference Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2010). On the influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Industrial and Engineering Chemistry Research, 49(17), 8086–8093.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2010). On the influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Industrial and Engineering Chemistry Research, 49(17), 8086–8093.CrossRef
89.
go back to reference Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2007). Nonequilibrium kinetic model that describes the reversible adsorption and desorption behavior of CO2 in a K-promoted hydrotalcite-like compound. Industrial and Engineering Chemistry Research, 46(6), 1737–1744.CrossRef Ebner, A. D., Reynolds, S. P., & Ritter, J. A. (2007). Nonequilibrium kinetic model that describes the reversible adsorption and desorption behavior of CO2 in a K-promoted hydrotalcite-like compound. Industrial and Engineering Chemistry Research, 46(6), 1737–1744.CrossRef
90.
go back to reference Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef
91.
go back to reference Walspurger, S., Boels, L., Cobden, P. D., Elzinga, G. D., Haije, W. G., & van den Brink, R. W. (2008). The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem, 1(7), 643–650.CrossRef Walspurger, S., Boels, L., Cobden, P. D., Elzinga, G. D., Haije, W. G., & van den Brink, R. W. (2008). The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem, 1(7), 643–650.CrossRef
92.
go back to reference Wu, Y. J., Li, P., Yu, J. G., Cunha, A. F., & Rodrigues, A. E. (2013). K-Promoted hydrotalcites for CO2 capture in sorption enhanced reactions. Chemical Engineering and Technology, 36(4), 567–574.CrossRef Wu, Y. J., Li, P., Yu, J. G., Cunha, A. F., & Rodrigues, A. E. (2013). K-Promoted hydrotalcites for CO2 capture in sorption enhanced reactions. Chemical Engineering and Technology, 36(4), 567–574.CrossRef
93.
go back to reference Ding, Y., & Alpay, E. (2001). High temperature recovery of CO2 from flue gases using hydrotalcite adsorbent. Process Safety and Environmental Protection, 79(1), 45–51.CrossRef Ding, Y., & Alpay, E. (2001). High temperature recovery of CO2 from flue gases using hydrotalcite adsorbent. Process Safety and Environmental Protection, 79(1), 45–51.CrossRef
94.
go back to reference Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial & Engineering Chemistry Research, 47(8), 2630–2635. Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial & Engineering Chemistry Research, 47(8), 2630–2635.
95.
go back to reference van Dijk, H. A. J., Walspurger, S., Cobden, P. D., van den Brink, R. W., & de Vos, F. G. (2011). Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. International Journal of Greenhouse Gas Control, 5(3), 505–511.CrossRef van Dijk, H. A. J., Walspurger, S., Cobden, P. D., van den Brink, R. W., & de Vos, F. G. (2011). Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. International Journal of Greenhouse Gas Control, 5(3), 505–511.CrossRef
96.
go back to reference Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef
97.
go back to reference Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef
98.
go back to reference Tessonnier, J. P. (2009). Carbon materials in heterogeneous catalysis. In Planck, F.-M. (Ed,), Lecture series: Modern methods in heterogeneous catalysis. Tessonnier, J. P. (2009). Carbon materials in heterogeneous catalysis. In Planck, F.-M. (Ed,), Lecture series: Modern methods in heterogeneous catalysis.
99.
go back to reference Chinthaginjala, J. K., Seshan, K., & Lefferts, L. (2007). Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Industrial and Engineering Chemistry Research, 46(12), 3968–3978.CrossRef Chinthaginjala, J. K., Seshan, K., & Lefferts, L. (2007). Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Industrial and Engineering Chemistry Research, 46(12), 3968–3978.CrossRef
100.
go back to reference Wong, H. S. P., & Akinwande, D. (2011). Carbon nanotube and graphene device physics. NY, USA: Cambridge University Press. Wong, H. S. P., & Akinwande, D. (2011). Carbon nanotube and graphene device physics. NY, USA: Cambridge University Press.
101.
go back to reference Rakov, E. G. (2006). Nanotubes and nanofibers. FL, USA: Taylor and Francis Group. Rakov, E. G. (2006). Nanotubes and nanofibers. FL, USA: Taylor and Francis Group.
102.
go back to reference Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catalysis Science & Technology, 2(1), 54–75.CrossRef Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catalysis Science & Technology, 2(1), 54–75.CrossRef
103.
go back to reference Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102(23), 4477–4482.CrossRef Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102(23), 4477–4482.CrossRef
104.
go back to reference Olah, G. A., Goeppert, A., & Prakash, G. K. S. (2006). Beyond oil and gas: The methanol economy. Weinheim, Germany: Wiley-VCH. Olah, G. A., Goeppert, A., & Prakash, G. K. S. (2006). Beyond oil and gas: The methanol economy. Weinheim, Germany: Wiley-VCH.
105.
go back to reference Baade, W. F., Parekh, U. N., & Raman, V. S. (2001). Hydrogen (Vol. 13, pp. 759–808). Kirk-Othmer Encyclopedia (online). Baade, W. F., Parekh, U. N., & Raman, V. S. (2001). Hydrogen (Vol. 13, pp. 759–808). Kirk-Othmer Encyclopedia (online).
106.
go back to reference Rostrup-Nielsen, J. R. (2008). Steam reforming. In Handbook of heterogeneous catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Rostrup-Nielsen, J. R. (2008). Steam reforming. In Handbook of heterogeneous catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
107.
go back to reference Harrison, D. P. (2008). Sorption-enhanced hydrogen production: A review. Industrial and Engineering Chemistry Research, 47(17), 6486–6501.CrossRef Harrison, D. P. (2008). Sorption-enhanced hydrogen production: A review. Industrial and Engineering Chemistry Research, 47(17), 6486–6501.CrossRef
108.
go back to reference Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2. Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2.
109.
go back to reference Choi, Y., & Stenger, H. (2002). Kinetics of methanol decomposition and water gas shift reaction on a commercial Cu-ZnO/Al2O3 catalyst. Fuel Chemistry Division Preprints, 47, 723–724. Choi, Y., & Stenger, H. (2002). Kinetics of methanol decomposition and water gas shift reaction on a commercial Cu-ZnO/Al2O3 catalyst. Fuel Chemistry Division Preprints, 47, 723–724.
110.
go back to reference Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef
111.
go back to reference Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R. W. V. D. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Industrial & Engineering Chemistry Research, 48(15), 6975–6982. Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & Brink, R. W. V. D. (2009). Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Industrial & Engineering Chemistry Research, 48(15), 6975–6982.
112.
go back to reference Broda, M., Manovic, V., Imtiaz, Q., Kierzkowska, A. M., Anthony, E. J., & Müller, C. R. (2013). High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst. Environmental Science and Technology, 47(11), 6007–6014.CrossRef Broda, M., Manovic, V., Imtiaz, Q., Kierzkowska, A. M., Anthony, E. J., & Müller, C. R. (2013). High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst. Environmental Science and Technology, 47(11), 6007–6014.CrossRef
113.
go back to reference Ochoa-Fernandez, E., Haugen, G., Zhao, T., Ronning, M., Aartun, I., Borresen, B., et al. (2007). Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chemistry, 9(6), 654–662.CrossRef Ochoa-Fernandez, E., Haugen, G., Zhao, T., Ronning, M., Aartun, I., Borresen, B., et al. (2007). Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chemistry, 9(6), 654–662.CrossRef
114.
go back to reference van Selow, E. R., Cobden, P. D., van den Brink, R. W., Hufton, J. R., & Wright, A. (2009). Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia, 1(1), 689–696.CrossRef van Selow, E. R., Cobden, P. D., van den Brink, R. W., Hufton, J. R., & Wright, A. (2009). Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia, 1(1), 689–696.CrossRef
115.
go back to reference Stevens, R. W, Jr., Shamsi, A., Carpenter, S., & Siriwardane, R. (2010). Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel, 89(6), 1280–1286.CrossRef Stevens, R. W, Jr., Shamsi, A., Carpenter, S., & Siriwardane, R. (2010). Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel, 89(6), 1280–1286.CrossRef
116.
go back to reference Liu, Y., Li, Z., Xu, L., & Cai, N. (2012). Effect of sorbent type on the sorption enhanced water gas shift process in a fluidized bed reactor. Industrial and Engineering Chemistry Research, 51(37), 11989–11997.CrossRef Liu, Y., Li, Z., Xu, L., & Cai, N. (2012). Effect of sorbent type on the sorption enhanced water gas shift process in a fluidized bed reactor. Industrial and Engineering Chemistry Research, 51(37), 11989–11997.CrossRef
117.
go back to reference Florin, N. H., & Harris, A. T. (2008). Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science, 63(2), 287–316.CrossRef Florin, N. H., & Harris, A. T. (2008). Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science, 63(2), 287–316.CrossRef
118.
go back to reference Pimenidou, P., Rickett, G., Dupont, V., & Twigg, M. V. (2010). High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor. Bioresource technology, 101(23), 9279–9286.CrossRef Pimenidou, P., Rickett, G., Dupont, V., & Twigg, M. V. (2010). High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor. Bioresource technology, 101(23), 9279–9286.CrossRef
119.
go back to reference Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef
120.
go back to reference Dou, B., Rickett, G. L., Dupont, V., Williams, P. T., Chen, H., Ding, Y., & Ghadiri, M. (2010). Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource technology, 101(7), 2436–2442.CrossRef Dou, B., Rickett, G. L., Dupont, V., Williams, P. T., Chen, H., Ding, Y., & Ghadiri, M. (2010). Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource technology, 101(7), 2436–2442.CrossRef
121.
go back to reference Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef
122.
go back to reference He, L., Berntsen, H., & Chen, D. (2009). Approaching sustainable H2 production: Sorption enhanced steam reforming of ethanol. The Journal of Physical Chemistry A, 114(11), 3834–3844.CrossRef He, L., Berntsen, H., & Chen, D. (2009). Approaching sustainable H2 production: Sorption enhanced steam reforming of ethanol. The Journal of Physical Chemistry A, 114(11), 3834–3844.CrossRef
123.
go back to reference Li, M. (2009). Thermodynamic analysis of adsorption enhanced reforming of ethanol. International Journal of Hydrogen Energy, 34(23), 9362–9372.CrossRef Li, M. (2009). Thermodynamic analysis of adsorption enhanced reforming of ethanol. International Journal of Hydrogen Energy, 34(23), 9362–9372.CrossRef
124.
go back to reference Cobden, P. D., van Beurden, P., Reijers, H. T. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., et al. (2007). Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. International Journal of Greenhouse Gas Control, 1(2), 170–179.CrossRef Cobden, P. D., van Beurden, P., Reijers, H. T. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., et al. (2007). Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. International Journal of Greenhouse Gas Control, 1(2), 170–179.CrossRef
Metadata
Title
Literature Review
Author
Diana Iruretagoyena Ferrer
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_2