Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Literature Review

Author : Yanlan Liu

Published in: Multifunctional Nanoprobes

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we have provided a summary regarding the concept, properties, and biomedical applications of nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef
2.
go back to reference Singh AK, Senapati D, Neely A et al (2009) Nonlinear optical properties of triangular silver nanomaterials. Chem Pgys Lett 481:94–98CrossRef Singh AK, Senapati D, Neely A et al (2009) Nonlinear optical properties of triangular silver nanomaterials. Chem Pgys Lett 481:94–98CrossRef
4.
go back to reference Medintz IL, Uyeda HT, Goldman ER (2005) Mattouss, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef Medintz IL, Uyeda HT, Goldman ER (2005) Mattouss, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef
5.
go back to reference Drummod DC, Meyer O, Hong K et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–744 Drummod DC, Meyer O, Hong K et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–744
6.
go back to reference Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRef Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRef
7.
go back to reference Huang X, Teng X, Chen D et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRef Huang X, Teng X, Chen D et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRef
8.
go back to reference Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef
9.
go back to reference Li X, Chen G, Yang L et al (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824CrossRef Li X, Chen G, Yang L et al (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824CrossRef
10.
go back to reference Wei W, Lu Y, Chen W et al (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133:2060–2063CrossRef Wei W, Lu Y, Chen W et al (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133:2060–2063CrossRef
11.
go back to reference Kim S, Fisher B, Eisler HJ (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125:11466–11467CrossRef Kim S, Fisher B, Eisler HJ (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125:11466–11467CrossRef
13.
go back to reference Hayashi K, Nakamura M, Miki H et al (2012) Near-infrared fluorescent silica/porphyrin hybrid nanorings for in vivo cancer imaging. Adv Funct Mater 22:3539–3546CrossRef Hayashi K, Nakamura M, Miki H et al (2012) Near-infrared fluorescent silica/porphyrin hybrid nanorings for in vivo cancer imaging. Adv Funct Mater 22:3539–3546CrossRef
14.
go back to reference Lummerstorfer T, Hoffmann H (2004) Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J Phys Chem B 108:3963–3966CrossRef Lummerstorfer T, Hoffmann H (2004) Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J Phys Chem B 108:3963–3966CrossRef
15.
go back to reference Wang L, Neoh KG, Kang E-T et al (2011) Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32:2166–2173CrossRef Wang L, Neoh KG, Kang E-T et al (2011) Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32:2166–2173CrossRef
16.
go back to reference Sandiford L, Phinikaridou A, Protti A et al (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (t1 mri-spect) imaging. ACS Nano 7:500–512CrossRef Sandiford L, Phinikaridou A, Protti A et al (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (t1 mri-spect) imaging. ACS Nano 7:500–512CrossRef
17.
go back to reference Hou Y, Qiao R, Fang F et al (2013) NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 7:330–338CrossRef Hou Y, Qiao R, Fang F et al (2013) NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 7:330–338CrossRef
18.
go back to reference Nyk M, Kumar R, Ohulchanskyy TY et al (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834–3838CrossRef Nyk M, Kumar R, Ohulchanskyy TY et al (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834–3838CrossRef
19.
go back to reference Boyer JC, Manseau MP, Murray JI et al (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for nir (800 nm) biolabeling within the biological window. Langmuir 26:1157–1164CrossRef Boyer JC, Manseau MP, Murray JI et al (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for nir (800 nm) biolabeling within the biological window. Langmuir 26:1157–1164CrossRef
20.
go back to reference Zhang T, Ge J, Hu Y et al (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207CrossRef Zhang T, Ge J, Hu Y et al (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207CrossRef
21.
go back to reference Johnson NJJ, Sangeetha NM, Boyer JC et al (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale 2:771–777CrossRef Johnson NJJ, Sangeetha NM, Boyer JC et al (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale 2:771–777CrossRef
22.
go back to reference Cui S, Yin D, Chen Y et al (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7:676–688CrossRef Cui S, Yin D, Chen Y et al (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7:676–688CrossRef
23.
go back to reference Yu CH, Caiulo N, Lo CCH et al (2006) Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Adv Mater 18:2312–2314CrossRef Yu CH, Caiulo N, Lo CCH et al (2006) Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Adv Mater 18:2312–2314CrossRef
24.
go back to reference Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441CrossRef Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441CrossRef
25.
go back to reference Zhang G, Liu Y, Yuan Q et al (2011) Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties. Nanoscale 3:4365–4371CrossRef Zhang G, Liu Y, Yuan Q et al (2011) Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties. Nanoscale 3:4365–4371CrossRef
26.
go back to reference Mahalingam V, Vetrone F, Naccache R et al (2009) Colloidal Tm3+/Yb3+-Doped LiYF4 nanocrystals: multiple luminescence spanning the uv to nir regions via low-energy excitation. Adv Mater 21:1–4 Mahalingam V, Vetrone F, Naccache R et al (2009) Colloidal Tm3+/Yb3+-Doped LiYF4 nanocrystals: multiple luminescence spanning the uv to nir regions via low-energy excitation. Adv Mater 21:1–4
27.
go back to reference Yi DK, Selvan ST, Lee SS et al (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991CrossRef Yi DK, Selvan ST, Lee SS et al (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991CrossRef
28.
go back to reference Cho NH, Cheong TC, HyunMin J et al (2011) A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6:675–682CrossRef Cho NH, Cheong TC, HyunMin J et al (2011) A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6:675–682CrossRef
29.
go back to reference Santra S, Yang H, Holloway PH et al (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127:1656–1657CrossRef Santra S, Yang H, Holloway PH et al (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127:1656–1657CrossRef
30.
go back to reference Hu KW, Hsu KC, Yeh CS (2010) pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 31:6843–6848CrossRef Hu KW, Hsu KC, Yeh CS (2010) pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 31:6843–6848CrossRef
31.
go back to reference Davis ME, Chen ZG (2008) Shin DM Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discovery 7:771–782CrossRef Davis ME, Chen ZG (2008) Shin DM Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discovery 7:771–782CrossRef
32.
go back to reference Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRef Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRef
33.
go back to reference Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Delivery Rev 56:1649–1659CrossRef Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Delivery Rev 56:1649–1659CrossRef
34.
go back to reference Park K, Lee S, Kang E et al (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19:1553–1566CrossRef Park K, Lee S, Kang E et al (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19:1553–1566CrossRef
35.
go back to reference Bardhan R, Amit joshi S, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 41:936–946 Bardhan R, Amit joshi S, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 41:936–946
36.
go back to reference Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053CrossRef Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053CrossRef
37.
go back to reference White KA, Chengelis DA, Gogick KA et al (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071CrossRef White KA, Chengelis DA, Gogick KA et al (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071CrossRef
38.
go back to reference Wang L, Yan R, Huo Z et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057CrossRef Wang L, Yan R, Huo Z et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057CrossRef
39.
go back to reference Ai K, Zhang B, Lu L (2009) Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem Int Ed 48:304–308CrossRef Ai K, Zhang B, Lu L (2009) Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem Int Ed 48:304–308CrossRef
40.
go back to reference Choi Y, Park Y, Kang T et al (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4:742–746CrossRef Choi Y, Park Y, Kang T et al (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4:742–746CrossRef
41.
go back to reference Ho JA, Chang HC, Su WT (2012) DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal Chem 84:3246–3253CrossRef Ho JA, Chang HC, Su WT (2012) DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal Chem 84:3246–3253CrossRef
42.
go back to reference Huang CC, Chen CT, Shiang YC et al (2009) Synthesis of fluorescent carbohydrate-protected au nanodots for detection of concanavalin a and escherichia coli. Anal Chem 81:875–882CrossRef Huang CC, Chen CT, Shiang YC et al (2009) Synthesis of fluorescent carbohydrate-protected au nanodots for detection of concanavalin a and escherichia coli. Anal Chem 81:875–882CrossRef
43.
go back to reference Wang L, Li Y (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 24:2557–2559 Wang L, Li Y (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 24:2557–2559
44.
go back to reference Long Y, Jiang D, Zhu X et al (2009) Trace Hg2+ analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal Chem 81:2652–2657CrossRef Long Y, Jiang D, Zhu X et al (2009) Trace Hg2+ analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal Chem 81:2652–2657CrossRef
45.
go back to reference Cao L, Ye J, Tong L et al (2008) A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem Eur J 14:9633–9640CrossRef Cao L, Ye J, Tong L et al (2008) A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem Eur J 14:9633–9640CrossRef
46.
go back to reference Deng R, Xie X, Vendrell M et al (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171CrossRef Deng R, Xie X, Vendrell M et al (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171CrossRef
47.
go back to reference Wang H, Wang Y, Jin J et al (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(ii) ions in aqueous solution. Anal Chem 80:9021–9028CrossRef Wang H, Wang Y, Jin J et al (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(ii) ions in aqueous solution. Anal Chem 80:9021–9028CrossRef
48.
go back to reference Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125CrossRef Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125CrossRef
49.
go back to reference Teolato P, Rampazzo E, Arduini M et al (2007) Silica nanoparticles for fluorescence sensing of ZnII: exploring the covalent strategy. Chem Eur J 13:2238–2245CrossRef Teolato P, Rampazzo E, Arduini M et al (2007) Silica nanoparticles for fluorescence sensing of ZnII: exploring the covalent strategy. Chem Eur J 13:2238–2245CrossRef
50.
go back to reference Bahshi L, Freeman R, Gill R et al (2009) Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small 5:676–680CrossRef Bahshi L, Freeman R, Gill R et al (2009) Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small 5:676–680CrossRef
51.
go back to reference You CC, Miranda OR, Gider B et al (2007) Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323CrossRef You CC, Miranda OR, Gider B et al (2007) Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323CrossRef
52.
go back to reference Liu Q, Peng J, Sun L et al (2011) High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5:8040–8048CrossRef Liu Q, Peng J, Sun L et al (2011) High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5:8040–8048CrossRef
53.
go back to reference Liu J, Liu Y, Liu Q et al (2011) Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc 133:15276–15279CrossRef Liu J, Liu Y, Liu Q et al (2011) Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc 133:15276–15279CrossRef
54.
go back to reference Zong C, Ai K, Zhang G et al (2011) Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal Chem 15:3126–3132CrossRef Zong C, Ai K, Zhang G et al (2011) Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal Chem 15:3126–3132CrossRef
55.
go back to reference Si D, Epstein T, Lee YEK et al (2012) Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions. Anal Chem 84:978–986CrossRef Si D, Epstein T, Lee YEK et al (2012) Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions. Anal Chem 84:978–986CrossRef
56.
go back to reference Kim S, Park JW, Kim D et al (2009) Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew Chem Int Ed 48:4138–4141CrossRef Kim S, Park JW, Kim D et al (2009) Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew Chem Int Ed 48:4138–4141CrossRef
57.
go back to reference Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94CrossRef Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94CrossRef
58.
go back to reference Liu JW, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959CrossRef Liu JW, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959CrossRef
59.
go back to reference Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039CrossRef Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039CrossRef
60.
go back to reference Wang ZX, Levy R, Fernig DG et al (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128:2214–2215CrossRef Wang ZX, Levy R, Fernig DG et al (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128:2214–2215CrossRef
61.
go back to reference Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131:9496–9497CrossRef Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131:9496–9497CrossRef
62.
go back to reference Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330:145–155CrossRef Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330:145–155CrossRef
63.
go back to reference Aslan K, Lakowicz JR, Geddes CD (2005) Nanogold plasmon resonance-based glucose sensing. 2. wavelength-ratiometric resonance light scattering. Anal Chem 77:2007–2014CrossRef Aslan K, Lakowicz JR, Geddes CD (2005) Nanogold plasmon resonance-based glucose sensing. 2. wavelength-ratiometric resonance light scattering. Anal Chem 77:2007–2014CrossRef
64.
go back to reference Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571CrossRef Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571CrossRef
65.
go back to reference Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83:2829–2833CrossRef Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83:2829–2833CrossRef
66.
go back to reference Liu H, Xu S, He Z et al (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85:3385–3392CrossRef Liu H, Xu S, He Z et al (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85:3385–3392CrossRef
67.
go back to reference Ji J, Yang H, Liu Y et al (2009) TiO2-assisted silver enhanced biosensor for kinase activity profiling. Chem Commun 12:1508–1510 Ji J, Yang H, Liu Y et al (2009) TiO2-assisted silver enhanced biosensor for kinase activity profiling. Chem Commun 12:1508–1510
68.
go back to reference Fu Y, Li P, Xie Q et al (2009) One-pot preparation of polymer–enzyme–metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv Funct Mater 19:1784–1791CrossRef Fu Y, Li P, Xie Q et al (2009) One-pot preparation of polymer–enzyme–metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv Funct Mater 19:1784–1791CrossRef
69.
go back to reference Xi F, Zhao D, Wang X et al (2013) Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem Commun 26:81–84CrossRef Xi F, Zhao D, Wang X et al (2013) Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem Commun 26:81–84CrossRef
70.
go back to reference Ishikawa FN, Chang HK, Curreli M et al (2009) Label-free, electrical detection of the SARS virus n-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3:1219–1224CrossRef Ishikawa FN, Chang HK, Curreli M et al (2009) Label-free, electrical detection of the SARS virus n-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3:1219–1224CrossRef
71.
go back to reference Roentgen WC (1895) On a new kind of rays. Sitzungsber Phys Med Ges Wurzburg 137:1132–1141 Roentgen WC (1895) On a new kind of rays. Sitzungsber Phys Med Ges Wurzburg 137:1132–1141
72.
go back to reference 吴晨希, 朱朝晖, 李方 et al (2011) 分子影像: 转化医学的重要工具和主要路径. 生物物理学报 27(4): 327–334 吴晨希, 朱朝晖, 李方 et al (2011) 分子影像: 转化医学的重要工具和主要路径. 生物物理学报 27(4): 327–334
73.
go back to reference Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614CrossRef Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614CrossRef
75.
go back to reference Wu X, Liu H, Liu J (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRef Wu X, Liu H, Liu J (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRef
76.
go back to reference Efros AL, Rosen M (1997) Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phy Rev Lett 78:1110–1113CrossRef Efros AL, Rosen M (1997) Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phy Rev Lett 78:1110–1113CrossRef
77.
go back to reference Wang K, He X, Yang X et al (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res 46:1367–1376CrossRef Wang K, He X, Yang X et al (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res 46:1367–1376CrossRef
78.
go back to reference Cai W, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676CrossRef Cai W, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676CrossRef
79.
go back to reference Igarashi R, Yoshinari Y, Yokota H et al (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12:5726–5732CrossRef Igarashi R, Yoshinari Y, Yokota H et al (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12:5726–5732CrossRef
80.
go back to reference Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423CrossRef Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423CrossRef
81.
go back to reference Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRef Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRef
82.
go back to reference Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef
84.
go back to reference Ding C, Zhu A, Tian Y (2013) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30CrossRef Ding C, Zhu A, Tian Y (2013) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30CrossRef
85.
go back to reference Eda G, Lin YY, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509CrossRef Eda G, Lin YY, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509CrossRef
86.
go back to reference Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929CrossRef Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929CrossRef
87.
go back to reference Lu YZ, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623CrossRef Lu YZ, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623CrossRef
88.
go back to reference Li W, Zhang Z, Kong B et al (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed 52:8151–8155CrossRef Li W, Zhang Z, Kong B et al (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed 52:8151–8155CrossRef
89.
go back to reference Mahalingam V, Vetrone F, Naccache R et al (2009) Colloidal Tm3+/Yb3+-Doped LiYF4 nanocrystals: multiple luminescence spanning the uv to nir regions via low-energy excitation. Adv Mater 21:4025–4028CrossRef Mahalingam V, Vetrone F, Naccache R et al (2009) Colloidal Tm3+/Yb3+-Doped LiYF4 nanocrystals: multiple luminescence spanning the uv to nir regions via low-energy excitation. Adv Mater 21:4025–4028CrossRef
90.
go back to reference Zhang Yu, Zheng F, Yang T et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11:817–826CrossRef Zhang Yu, Zheng F, Yang T et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11:817–826CrossRef
91.
go back to reference Li LL, Wu P, Hwang K et al (2013) An exceptionally simple strategy for dna-functionalized upconversion nanoparticles as biocompatible agents for nano-assembly, DNA delivery and imaging. J Am Chem Soc 135:2411–2414CrossRef Li LL, Wu P, Hwang K et al (2013) An exceptionally simple strategy for dna-functionalized upconversion nanoparticles as biocompatible agents for nano-assembly, DNA delivery and imaging. J Am Chem Soc 135:2411–2414CrossRef
92.
go back to reference Liu Q, Yin B, Yang T et al (2013) A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J Am Chem Soc 135:5029–5037CrossRef Liu Q, Yin B, Yang T et al (2013) A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J Am Chem Soc 135:5029–5037CrossRef
93.
go back to reference Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6:2781–2795CrossRef Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6:2781–2795CrossRef
94.
go back to reference Tian G, Gu Z, Zhou L et al (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24:1226–1231CrossRef Tian G, Gu Z, Zhou L et al (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24:1226–1231CrossRef
95.
go back to reference Li Z, Zhang Y, Jiang S (2008) Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater 20:4765–4769CrossRef Li Z, Zhang Y, Jiang S (2008) Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater 20:4765–4769CrossRef
96.
go back to reference Bottrill M, Kwok L, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35:557–571CrossRef Bottrill M, Kwok L, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35:557–571CrossRef
97.
go back to reference Villaraza AJL, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959CrossRef Villaraza AJL, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959CrossRef
98.
go back to reference Viswanathan S, Kovacs Z, Green KN et al (2010) Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev 110:2960–3018CrossRef Viswanathan S, Kovacs Z, Green KN et al (2010) Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev 110:2960–3018CrossRef
99.
go back to reference Neves AA, Krishnan AS, Kettunen MI et al (2007) A Paramagnetic nanoprobe to detect tumor cell death using magnetic resonance imaging. Nano Lett 7:1419–1423CrossRef Neves AA, Krishnan AS, Kettunen MI et al (2007) A Paramagnetic nanoprobe to detect tumor cell death using magnetic resonance imaging. Nano Lett 7:1419–1423CrossRef
100.
go back to reference Schooneveld MM van, Vucic E, Koole R et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8:2517–2525CrossRef Schooneveld MM van, Vucic E, Koole R et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8:2517–2525CrossRef
101.
go back to reference Duncan AK, Klemm PJ, Raymond KN et al (2012) Silica microparticles as a solid support for gadolinium phosphonate magnetic resonance imaging contrast agents. J Am Chem Soc 134:8046–8049CrossRef Duncan AK, Klemm PJ, Raymond KN et al (2012) Silica microparticles as a solid support for gadolinium phosphonate magnetic resonance imaging contrast agents. J Am Chem Soc 134:8046–8049CrossRef
102.
go back to reference Chandrasekharan P, Yong CX, Poh Z et al (2012) Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials 33:9225–9231CrossRef Chandrasekharan P, Yong CX, Poh Z et al (2012) Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials 33:9225–9231CrossRef
103.
go back to reference Mi P, Cabral H, Kokuryo D et al (2013) Gd-DTPA-loaded polymeremetal complex micelles with high relaxivity for MR cancer imaging. Biomaterials 34:492–500CrossRef Mi P, Cabral H, Kokuryo D et al (2013) Gd-DTPA-loaded polymeremetal complex micelles with high relaxivity for MR cancer imaging. Biomaterials 34:492–500CrossRef
104.
go back to reference Richard C, Doan BT, Beloeil JC et al (2008) Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T1 and T2 MRI contrast agents. Nano Lett 8:232–236CrossRef Richard C, Doan BT, Beloeil JC et al (2008) Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T1 and T2 MRI contrast agents. Nano Lett 8:232–236CrossRef
105.
go back to reference Mulder WJM, Strijkers GJ, van Tilborg GAF et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164CrossRef Mulder WJM, Strijkers GJ, van Tilborg GAF et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164CrossRef
106.
go back to reference Cormode DP, Skajaa T, van Schooneveld MM et al (2008) Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 8:3715–3723CrossRef Cormode DP, Skajaa T, van Schooneveld MM et al (2008) Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 8:3715–3723CrossRef
107.
go back to reference Rieter WJ, Kim JS, Taylor KML et al (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46:3680–3682CrossRef Rieter WJ, Kim JS, Taylor KML et al (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46:3680–3682CrossRef
108.
go back to reference Bridot JL, Faure AC, Laurent S et al (2007) Gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084CrossRef Bridot JL, Faure AC, Laurent S et al (2007) Gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084CrossRef
109.
go back to reference Kumar R, Nyk M, Ohulchanskyy TY et al (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19:853–859CrossRef Kumar R, Nyk M, Ohulchanskyy TY et al (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19:853–859CrossRef
110.
go back to reference Park YI, Kim JH, Lee KT et al (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and t1 magnetic resonance imaging contrast agent. Adv Mater 21:4467–4471CrossRef Park YI, Kim JH, Lee KT et al (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and t1 magnetic resonance imaging contrast agent. Adv Mater 21:4467–4471CrossRef
111.
go back to reference Chen F, Bu W, Zhang S et al (2013) Gd3+-ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv Funct Mater 23:298–307CrossRef Chen F, Bu W, Zhang S et al (2013) Gd3+-ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv Funct Mater 23:298–307CrossRef
112.
go back to reference Peng YK, Lai CW, Liu CL et al (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. ACS Nano 5:4177–4187CrossRef Peng YK, Lai CW, Liu CL et al (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. ACS Nano 5:4177–4187CrossRef
113.
go back to reference Na HB, Lee JH, An K et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using mno nanoparticles. Angew Chem Int Ed 46:5397–5401CrossRef Na HB, Lee JH, An K et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using mno nanoparticles. Angew Chem Int Ed 46:5397–5401CrossRef
114.
go back to reference Lee YC, Chen DY, Dodd SJ et al (2012) The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 33:3560–3567CrossRef Lee YC, Chen DY, Dodd SJ et al (2012) The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 33:3560–3567CrossRef
115.
go back to reference Pan D, Caruthers SD, Senpan A et al (2011) Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. J Am Chem Soc 133:9168–9171CrossRef Pan D, Caruthers SD, Senpan A et al (2011) Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. J Am Chem Soc 133:9168–9171CrossRef
116.
go back to reference Qin J, Laurent S, Jo YS et al (2007) A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater 19:1874–1878CrossRef Qin J, Laurent S, Jo YS et al (2007) A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater 19:1874–1878CrossRef
117.
go back to reference Lee N, Choi Y, Lee Y et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131CrossRef Lee N, Choi Y, Lee Y et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131CrossRef
118.
go back to reference Kim BH, Lee N, Kim H et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef Kim BH, Lee N, Kim H et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef
119.
go back to reference Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthcare Mater 1:413–431CrossRef Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthcare Mater 1:413–431CrossRef
120.
go back to reference Haller C, Hizoh I (2004) In vitro cytotoxic effects of iodinated contrast media on a renal tubular cell line. Invest Radiol 39:149–154CrossRef Haller C, Hizoh I (2004) In vitro cytotoxic effects of iodinated contrast media on a renal tubular cell line. Invest Radiol 39:149–154CrossRef
121.
go back to reference Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666CrossRef Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666CrossRef
122.
go back to reference Kim D, Park S, Lee JH et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665CrossRef Kim D, Park S, Lee JH et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665CrossRef
123.
go back to reference Eck W, Nicholson AI, Zentgraf H et al (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in x-ray computed tomography of live mice. Nano Lett 10:2318–2322CrossRef Eck W, Nicholson AI, Zentgraf H et al (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in x-ray computed tomography of live mice. Nano Lett 10:2318–2322CrossRef
124.
go back to reference Sun IC, Eun DK, Na JH et al (2009) Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem Eur J 15:13341–13347CrossRef Sun IC, Eun DK, Na JH et al (2009) Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem Eur J 15:13341–13347CrossRef
125.
go back to reference Chou SW, Shau YH, Wu PC et al (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132:13270–13278CrossRef Chou SW, Shau YH, Wu PC et al (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132:13270–13278CrossRef
126.
go back to reference Rabin O, Perez JM, Grimm J et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122CrossRef Rabin O, Perez JM, Grimm J et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122CrossRef
127.
go back to reference Oh MH, Lee N, Kim H et al (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for x-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133:5508–5515CrossRef Oh MH, Lee N, Kim H et al (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for x-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133:5508–5515CrossRef
128.
go back to reference Schutt EG, Klein DH, Mattrey RM et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed 42:3218–3235CrossRef Schutt EG, Klein DH, Mattrey RM et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed 42:3218–3235CrossRef
129.
go back to reference Lin PL, Eckersley RJ, Hall EAH (2009) Ultrabubble: a laminated ultrasound contrast agent with narrow size range. Adv Mater 21:3949–3952CrossRef Lin PL, Eckersley RJ, Hall EAH (2009) Ultrabubble: a laminated ultrasound contrast agent with narrow size range. Adv Mater 21:3949–3952CrossRef
130.
go back to reference Lopez RD, Tsapis N, Libong D et al (2009) Phospholipid decoration of microcapsules containing perfluorooctyl bromide used as ultrasound contrast agents. Biomaterials 30:1462–1472CrossRef Lopez RD, Tsapis N, Libong D et al (2009) Phospholipid decoration of microcapsules containing perfluorooctyl bromide used as ultrasound contrast agents. Biomaterials 30:1462–1472CrossRef
131.
go back to reference Wang X, Chen H, Chen Y et al (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24:789–791 Wang X, Chen H, Chen Y et al (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24:789–791
132.
go back to reference Ku G, Zhou M, Song S et al (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496CrossRef Ku G, Zhou M, Song S et al (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496CrossRef
133.
go back to reference Homan KA, Souza M, Truby R et al (2012) Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 6:641–650CrossRef Homan KA, Souza M, Truby R et al (2012) Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 6:641–650CrossRef
134.
go back to reference Liu Z, Cai W, He L et al (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52CrossRef Liu Z, Cai W, He L et al (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52CrossRef
135.
go back to reference Huynh E, Lovell JF, Helfield B et al (2012) Porphyrin shell microbubbles with intrinsic ultrasound and pho-toacoustic properties. J Am Chem Soc 134:16464–16467CrossRef Huynh E, Lovell JF, Helfield B et al (2012) Porphyrin shell microbubbles with intrinsic ultrasound and pho-toacoustic properties. J Am Chem Soc 134:16464–16467CrossRef
136.
go back to reference Zerda ADL, Zavaleta C, Keren S et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562CrossRef Zerda ADL, Zavaleta C, Keren S et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562CrossRef
137.
go back to reference Hong H, Yang K, Zhang Y et al (2012) In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6:2361–2370CrossRef Hong H, Yang K, Zhang Y et al (2012) In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6:2361–2370CrossRef
138.
go back to reference Wang Y, Liu Y, Luehmann H et al (2012) Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 6:5880–5888CrossRef Wang Y, Liu Y, Luehmann H et al (2012) Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 6:5880–5888CrossRef
139.
go back to reference Wong RM, Gilbert DA, Liu K et al (2012) Rapid Size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6:3461–3467CrossRef Wong RM, Gilbert DA, Liu K et al (2012) Rapid Size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6:3461–3467CrossRef
140.
go back to reference Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026 Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026
141.
go back to reference Burns AA, Vider J, Ow H et al (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448CrossRef Burns AA, Vider J, Ow H et al (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448CrossRef
142.
go back to reference Lee N, Cho HR, Oh MH et al (2012) Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and x-ray computed tomography. J Am Chem Soc 134:10309–10312CrossRef Lee N, Cho HR, Oh MH et al (2012) Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and x-ray computed tomography. J Am Chem Soc 134:10309–10312CrossRef
143.
go back to reference Banerjee SR, Pullambhatla M, Byun Y et al (2011) Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen. Angew Chem Int Ed 50:9167–9170CrossRef Banerjee SR, Pullambhatla M, Byun Y et al (2011) Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen. Angew Chem Int Ed 50:9167–9170CrossRef
144.
go back to reference Xia A, Chen M, Gao Y et al (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33:5394–5405CrossRef Xia A, Chen M, Gao Y et al (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33:5394–5405CrossRef
145.
go back to reference Bruns OT, Ittrich H, Peldschus K et al (2009) Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat Nanotechnol 4:193–201CrossRef Bruns OT, Ittrich H, Peldschus K et al (2009) Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat Nanotechnol 4:193–201CrossRef
146.
go back to reference Harrisson S, Nicolas J, Maksimenko A et al (2012) Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew Chem Int Ed 51:1678–1682 Harrisson S, Nicolas J, Maksimenko A et al (2012) Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew Chem Int Ed 51:1678–1682
147.
go back to reference Peng F, Su Y, Wei X et al (2012) Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew Chem Int Ed 51:1457–1461 Peng F, Su Y, Wei X et al (2012) Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew Chem Int Ed 51:1457–1461
148.
go back to reference Qi C, Zhu YJ, Zhao XY et al (2012) Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using atp as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987CrossRef Qi C, Zhu YJ, Zhao XY et al (2012) Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using atp as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987CrossRef
149.
go back to reference Xing L, Zheng H, Cao Y et al (2012) Coordination polymer coated mesoporous silica nanoparticles for ph-responsive drug release. Adv Mater 24:6433–6437CrossRef Xing L, Zheng H, Cao Y et al (2012) Coordination polymer coated mesoporous silica nanoparticles for ph-responsive drug release. Adv Mater 24:6433–6437CrossRef
150.
go back to reference Zhang ZY, Xu YD, Ma YY et al (2013) Biodegradable ZnO@polymer core–shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew Chem Int Ed 52:4127–4131CrossRef Zhang ZY, Xu YD, Ma YY et al (2013) Biodegradable ZnO@polymer core–shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew Chem Int Ed 52:4127–4131CrossRef
151.
go back to reference Zhang J, Yuan ZF, Wang Y et al (2013) Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc 135:5068–5073CrossRef Zhang J, Yuan ZF, Wang Y et al (2013) Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc 135:5068–5073CrossRef
152.
go back to reference Fang W, Yang J, Gong J et al (2011) Photo-and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv Funct Mater 22:842–848CrossRef Fang W, Yang J, Gong J et al (2011) Photo-and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv Funct Mater 22:842–848CrossRef
153.
go back to reference Zhang X, Yang P, Dai Y et al (2013) Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv Funct Mater 23:4067–4078CrossRef Zhang X, Yang P, Dai Y et al (2013) Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv Funct Mater 23:4067–4078CrossRef
154.
go back to reference Huang P, Lin J, Wang S et al (2013) Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34:4643–4653CrossRef Huang P, Lin J, Wang S et al (2013) Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34:4643–4653CrossRef
155.
go back to reference Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857CrossRef Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857CrossRef
156.
go back to reference Brasch M, Escosura A, Ma Y et al (2011) Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 133:6878–6881CrossRef Brasch M, Escosura A, Ma Y et al (2011) Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 133:6878–6881CrossRef
157.
go back to reference Cheng Y, Samia AC, Meyers JD et al (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130:10643–10647CrossRef Cheng Y, Samia AC, Meyers JD et al (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130:10643–10647CrossRef
158.
go back to reference Ratanatawanate C, Chyao A, Jr KJB (2011) S-Nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J Am Chem Soc 133:3492–3497 Ratanatawanate C, Chyao A, Jr KJB (2011) S-Nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J Am Chem Soc 133:3492–3497
159.
go back to reference Kim S, Ohulchanskyy TY, Pudavar HE et al (2007) Organically modified silica nanoparticles Co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675CrossRef Kim S, Ohulchanskyy TY, Pudavar HE et al (2007) Organically modified silica nanoparticles Co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675CrossRef
160.
go back to reference Liang X, Li X, Yue X et al (2011) Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew Chem Int Ed 50:11622–11627CrossRef Liang X, Li X, Yue X et al (2011) Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew Chem Int Ed 50:11622–11627CrossRef
161.
go back to reference Park YI, Kim HM, Kim JH et al (2012) Theranostic Probe Based on Lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24:5755–5761CrossRef Park YI, Kim HM, Kim JH et al (2012) Theranostic Probe Based on Lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24:5755–5761CrossRef
162.
go back to reference Liu K, Liu X, Zeng Q et al (2012) Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6:4054–4062CrossRef Liu K, Liu X, Zeng Q et al (2012) Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6:4054–4062CrossRef
163.
go back to reference Wang C, Cheng L, Liu Y et al (2013) Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv Funct Mater 23:3077–3086CrossRef Wang C, Cheng L, Liu Y et al (2013) Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv Funct Mater 23:3077–3086CrossRef
164.
go back to reference Wang C, Tao H, Cheng L et al (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–6154CrossRef Wang C, Tao H, Cheng L et al (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–6154CrossRef
165.
go back to reference Qian HS, Guo HC, Ho PCL et al (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5:2285–2290CrossRef Qian HS, Guo HC, Ho PCL et al (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5:2285–2290CrossRef
166.
go back to reference Choi WI, Kim JY, Kang C et al (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003CrossRef Choi WI, Kim JY, Kang C et al (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003CrossRef
167.
go back to reference Xiao Z, Ji C, Shi J et al (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 51:11853–11857CrossRef Xiao Z, Ji C, Shi J et al (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 51:11853–11857CrossRef
168.
go back to reference Lee SM, Kim HJ, Ha YJ et al (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7:50–57CrossRef Lee SM, Kim HJ, Ha YJ et al (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7:50–57CrossRef
169.
go back to reference Gao L, Fei J, Zhao J et al (2012) Hypocrellin loaded gold nanocages with high two-photon efficiency for the photothermal/photodynamic cancer therapy in vitro. ACS Nano 6:8030–8040CrossRef Gao L, Fei J, Zhao J et al (2012) Hypocrellin loaded gold nanocages with high two-photon efficiency for the photothermal/photodynamic cancer therapy in vitro. ACS Nano 6:8030–8040CrossRef
170.
go back to reference Yang J, Lee J, Kang J et al (2009) Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater 21:4339–4342CrossRef Yang J, Lee J, Kang J et al (2009) Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater 21:4339–4342CrossRef
171.
go back to reference Zhang W, Guo Z, Huang D et al (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–8561CrossRef Zhang W, Guo Z, Huang D et al (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–8561CrossRef
172.
go back to reference Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601CrossRef Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601CrossRef
173.
go back to reference Kam NWS, O’Connell M, Wisdom JA et al (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605CrossRef Kam NWS, O’Connell M, Wisdom JA et al (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605CrossRef
174.
go back to reference Wang X, Wang C, Cheng L et al (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422CrossRef Wang X, Wang C, Cheng L et al (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422CrossRef
175.
go back to reference Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32:1121–1129CrossRef Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32:1121–1129CrossRef
176.
go back to reference Liu X, Tao H, Yang K et al (2011) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151CrossRef Liu X, Tao H, Yang K et al (2011) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151CrossRef
177.
go back to reference Tian Q, Jiang F, Zou R et al (2011) Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5:9761–9771CrossRef Tian Q, Jiang F, Zou R et al (2011) Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5:9761–9771CrossRef
178.
go back to reference Song G, Wang Q, Wang Y et al (2013) A low-toxic multifunctional nanoplatform based on Cu9S5 @mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv Funct Mater 23:4281–4292CrossRef Song G, Wang Q, Wang Y et al (2013) A low-toxic multifunctional nanoplatform based on Cu9S5 @mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv Funct Mater 23:4281–4292CrossRef
179.
go back to reference Dong K, Liu Z, Li Z et al (2013) Hydrophobic Anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv Mater 25:4452–4458CrossRef Dong K, Liu Z, Li Z et al (2013) Hydrophobic Anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv Mater 25:4452–4458CrossRef
180.
go back to reference Tian Q, Tang M, Sun Y et al (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23:3542–3547CrossRef Tian Q, Tang M, Sun Y et al (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23:3542–3547CrossRef
181.
go back to reference Hessel CM, Pattani VP, Rasch M et al (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11:2560–2566CrossRef Hessel CM, Pattani VP, Rasch M et al (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11:2560–2566CrossRef
182.
go back to reference Li W, Zamani R, Gil PR et al (2013) CuTe Nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135:7098–7101CrossRef Li W, Zamani R, Gil PR et al (2013) CuTe Nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135:7098–7101CrossRef
183.
go back to reference Chu M, Pan X, Zhang D et al (2012) The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 33:7071–7083CrossRef Chu M, Pan X, Zhang D et al (2012) The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 33:7071–7083CrossRef
184.
go back to reference Chou SS, Kaehr B, Kim J et al (2013) Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed 52:4160–4164CrossRef Chou SS, Kaehr B, Kim J et al (2013) Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed 52:4160–4164CrossRef
185.
go back to reference Chen Z, Wang Q, Wang H et al (2013) Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater 25:2095–2100CrossRef Chen Z, Wang Q, Wang H et al (2013) Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater 25:2095–2100CrossRef
186.
go back to reference Wang S, Kim G, Lee YEK et al (2012) Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics—a “see and treat” strategy. ACS Nano 6:6843–6851CrossRef Wang S, Kim G, Lee YEK et al (2012) Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics—a “see and treat” strategy. ACS Nano 6:6843–6851CrossRef
187.
go back to reference Cheng L, Yang K, Chen Q et al (2012) Organic Stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6:5605–5613CrossRef Cheng L, Yang K, Chen Q et al (2012) Organic Stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6:5605–5613CrossRef
188.
go back to reference Zha Z, Yue X, Ren Q et al (2012) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25:777–782CrossRef Zha Z, Yue X, Ren Q et al (2012) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25:777–782CrossRef
189.
go back to reference Yang K, Xu H, Cheng L et al (2012) In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 24:5586–5592CrossRef Yang K, Xu H, Cheng L et al (2012) In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 24:5586–5592CrossRef
190.
go back to reference Yang J, Choi J, Bang D et al (2011) Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed 50:441–444CrossRef Yang J, Choi J, Bang D et al (2011) Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed 50:441–444CrossRef
191.
go back to reference Lovell JF, Jin CS, Huynh E et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332CrossRef Lovell JF, Jin CS, Huynh E et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332CrossRef
192.
go back to reference Lovell JF, Jin CS, Huynh E et al (2012) Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed 51:2429–2433CrossRef Lovell JF, Jin CS, Huynh E et al (2012) Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed 51:2429–2433CrossRef
193.
go back to reference Lee JH, Jang JT, Choi J et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422CrossRef Lee JH, Jang JT, Choi J et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422CrossRef
194.
go back to reference Bae KH, Park M, Do MJ et al (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273CrossRef Bae KH, Park M, Do MJ et al (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273CrossRef
195.
go back to reference Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171CrossRef Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171CrossRef
196.
go back to reference Zheng M, Yue C, Ma Y et al (2013) Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067CrossRef Zheng M, Yue C, Ma Y et al (2013) Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067CrossRef
197.
go back to reference Sheng Z, Song L, Zheng J et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRef Sheng Z, Song L, Zheng J et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRef
198.
go back to reference Lee JH, Chen KJ, Noh SH et al (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed 52:4384–4388CrossRef Lee JH, Chen KJ, Noh SH et al (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed 52:4384–4388CrossRef
199.
go back to reference Tong R, Hemmati HD, Langer R et al (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134:8848–8855CrossRef Tong R, Hemmati HD, Langer R et al (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134:8848–8855CrossRef
200.
go back to reference Wang S, Huang P, Nie L et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061CrossRef Wang S, Huang P, Nie L et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061CrossRef
201.
go back to reference Chen Y, Chen H, Sun Y et al (2011) Multifunctional Mesoporous Composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50:12505–12509CrossRef Chen Y, Chen H, Sun Y et al (2011) Multifunctional Mesoporous Composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50:12505–12509CrossRef
202.
go back to reference Cheng L, Yang K, Li Y et al (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50:7385–7390CrossRef Cheng L, Yang K, Li Y et al (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50:7385–7390CrossRef
203.
go back to reference Hu SH, Chen YW, Hung WT et al (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754CrossRef Hu SH, Chen YW, Hung WT et al (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754CrossRef
204.
go back to reference You JO, Guo P, Auguste DT (2013) A drug-delivery vehicle combining the targeting and thermal ablation of HER2 + breast-cancer cells with triggered drug release. Angew Chem Int Ed 52:4141–4146 You JO, Guo P, Auguste DT (2013) A drug-delivery vehicle combining the targeting and thermal ablation of HER2 + breast-cancer cells with triggered drug release. Angew Chem Int Ed 52:4141–4146
205.
go back to reference Yang J, Lee CH, Ko HJ et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839CrossRef Yang J, Lee CH, Ko HJ et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839CrossRef
206.
go back to reference Huh YM, Lee ES, Lee JH et al (2007) Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater 19:3109–3112CrossRef Huh YM, Lee ES, Lee JH et al (2007) Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater 19:3109–3112CrossRef
207.
go back to reference Bhirde AA, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316CrossRef Bhirde AA, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316CrossRef
208.
go back to reference Yoo D, Jeong H, Preihs C (2012) Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed 51:12482–12485CrossRef Yoo D, Jeong H, Preihs C (2012) Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed 51:12482–12485CrossRef
209.
go back to reference Chen H, Li B, Ren X et al (2012) Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials 33:8461–8476CrossRef Chen H, Li B, Ren X et al (2012) Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials 33:8461–8476CrossRef
210.
go back to reference Yang HW, Liu HL, Li ML et al (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34:5651–5660CrossRef Yang HW, Liu HL, Li ML et al (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34:5651–5660CrossRef
Metadata
Title
Literature Review
Author
Yanlan Liu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6168-4_1

Premium Partners