Skip to main content
Top
Published in: Journal of Materials Science 40/2022

15-10-2022 | Energy materials

Lithiated poly (ether ether ketone) separators with excellent thermal stability and electrolyte wettability for lithium-ion battery

Authors: Longhui Li, Ruoyu Xiong, Xuyang Wang, Mengyuan Zhou, Shuang Sun, Guancheng Shen, Lan Song, Yun Zhang, Huamin Zhou

Published in: Journal of Materials Science | Issue 40/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The separators with excellent thermal stability and electrolyte wettability are pivotal for ensuring the safety and performance of lithium-ion batteries (LIBs). Poly (ether ether ketone) (PEEK) is a potential separator material that meets these criteria. However, the poor solubility and high melting temperature of PEEK limit its practical production and application. Herein, we report a safe and convenient strategy to fabricate lithiated poly (ether ether ketone) (LPEEK) separators via lithiation of PEEK and thermally induced phase separation below the melting point. And the pore structure of LPEEK separators can be regulated by the amount of polyvinylpyrrolidone. Compared with commercial polypropylene (PP) separators and other PEEK separators, our LPEEK separators exhibit excellent thermal stability (LPEEK, almost no change at 200 °C; PP, shrink 4.4% at 100 °C) and electrolyte wettability (electrolyte contact angle: LPEEK, 0°; PP, 37.9°). Meanwhile, the LPEEK separators can still be used normally after 200 °C high-temperature treatment and are promising candidates for the LIB separators used at high temperatures. The proposed method holds promise for the industrial production of PEEK separators.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Harper G, Sommerville R, Kendrick E et al (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86CrossRef Harper G, Sommerville R, Kendrick E et al (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86CrossRef
2.
go back to reference Tan DHS, Chen YT, Yang H et al (2021) Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373:1494–1499CrossRef Tan DHS, Chen YT, Yang H et al (2021) Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373:1494–1499CrossRef
3.
go back to reference Ye Y, Chou LY, Liu Y et al (2020) Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat Energy 5:786–793CrossRef Ye Y, Chou LY, Liu Y et al (2020) Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat Energy 5:786–793CrossRef
4.
go back to reference Saverina EA, Sivasankaran V, Kapaev RR et al (2020) An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem 22:359–367CrossRef Saverina EA, Sivasankaran V, Kapaev RR et al (2020) An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem 22:359–367CrossRef
5.
go back to reference Liu H, Zhu Z, Yan Q et al (2020) A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585:63–67CrossRef Liu H, Zhu Z, Yan Q et al (2020) A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585:63–67CrossRef
6.
go back to reference Ji H, Wu J, Cai Z et al (2020) Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat Energy 5:213–221CrossRef Ji H, Wu J, Cai Z et al (2020) Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat Energy 5:213–221CrossRef
8.
go back to reference Long MC, Wang T, Duan PH et al (2022) Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. J Energy Chem 65:9–18CrossRef Long MC, Wang T, Duan PH et al (2022) Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. J Energy Chem 65:9–18CrossRef
9.
go back to reference Sun X, Li M, Ren S, Lei T, Lee SY, Lee S, Wu Q (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. J Power Sources 454:227878CrossRef Sun X, Li M, Ren S, Lei T, Lee SY, Lee S, Wu Q (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. J Power Sources 454:227878CrossRef
10.
go back to reference Yan S, Chen X, Zhou P, Wang P, Zhou H, Zhang W, Xia Y, Liu K (2022) Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode. J Energy Chem 67:467–473CrossRef Yan S, Chen X, Zhou P, Wang P, Zhou H, Zhang W, Xia Y, Liu K (2022) Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode. J Energy Chem 67:467–473CrossRef
11.
go back to reference Deng L, Wang Y, Cai C, Wei Z, Fu Y (2021) 3D-cellulose acetate-derived hierarchical network with controllable nanopores for superior Li+ transference number, mechanical strength and dendrites hindrance. Carbohydr Polym 274:118620CrossRef Deng L, Wang Y, Cai C, Wei Z, Fu Y (2021) 3D-cellulose acetate-derived hierarchical network with controllable nanopores for superior Li+ transference number, mechanical strength and dendrites hindrance. Carbohydr Polym 274:118620CrossRef
12.
go back to reference Li J, Zhang Y, Shang R, Cheng C, Cheng Y, Xing J, Wei Z, Zhao Y (2021) Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Mater 43:143–157CrossRef Li J, Zhang Y, Shang R, Cheng C, Cheng Y, Xing J, Wei Z, Zhao Y (2021) Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Mater 43:143–157CrossRef
13.
go back to reference Klein S, Wrogemann JM, van Wickeren S et al (2022) Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523|| graphite lithium ion cells. Adv. Energy Mater. 12:2102CrossRef Klein S, Wrogemann JM, van Wickeren S et al (2022) Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523|| graphite lithium ion cells. Adv. Energy Mater. 12:2102CrossRef
14.
go back to reference Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y (2018) Highly safe lithium-ion batteries: High strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sources 400:502–510CrossRef Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y (2018) Highly safe lithium-ion batteries: High strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sources 400:502–510CrossRef
15.
go back to reference Chen WJ, Zhao CX, Li BQ, Yuan TQ, Zhang Q (2021) Lignin-derived materials and their applications in rechargeable batteries. Green Chem 24:565–584CrossRef Chen WJ, Zhao CX, Li BQ, Yuan TQ, Zhang Q (2021) Lignin-derived materials and their applications in rechargeable batteries. Green Chem 24:565–584CrossRef
17.
go back to reference Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4:540–550CrossRef Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4:540–550CrossRef
18.
go back to reference Wang F, Ke X, Shen K, Zhu L, Yuan C (2022) A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv Mater Technol 7:2100772CrossRef Wang F, Ke X, Shen K, Zhu L, Yuan C (2022) A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv Mater Technol 7:2100772CrossRef
20.
go back to reference Niu Y, Zheng S, Song P, Zhang X, Wang C (2021) Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Compos Pt B 212:108715CrossRef Niu Y, Zheng S, Song P, Zhang X, Wang C (2021) Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Compos Pt B 212:108715CrossRef
21.
go back to reference Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z (2022) Based on confined polymerization: In situ synthesis of PANI/PEEK composite film in one-step. Adv Sci 9:2103706CrossRef Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z (2022) Based on confined polymerization: In situ synthesis of PANI/PEEK composite film in one-step. Adv Sci 9:2103706CrossRef
22.
go back to reference Li J, Niu X, Song J, Li Y, Li X, Hao W, Fang J, He T (2019) Harvesting vapor by hygroscopic acid to create pore: Morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. J Membr Sci 577:1–11CrossRef Li J, Niu X, Song J, Li Y, Li X, Hao W, Fang J, He T (2019) Harvesting vapor by hygroscopic acid to create pore: Morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. J Membr Sci 577:1–11CrossRef
23.
go back to reference Liu J, Mo Y, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y (2019) Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl Energ Mater 2:3886–3895CrossRef Liu J, Mo Y, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y (2019) Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl Energ Mater 2:3886–3895CrossRef
24.
go back to reference Zhang S, Feng Z, Hu Y et al (2021) Endowing polyetheretherketone implants with osseointegration properties: In situ construction of patterned nanorod arrays. Small 18:2105589CrossRef Zhang S, Feng Z, Hu Y et al (2021) Endowing polyetheretherketone implants with osseointegration properties: In situ construction of patterned nanorod arrays. Small 18:2105589CrossRef
25.
go back to reference Lyu H, Jiang N, Hu J, Li Y, Zhou N, Zhang D (2022) Preparing water-based phosphorylated PEEK sizing agent for CF/PEEK interface enhancement. Compos Sci Technol 217:109096CrossRef Lyu H, Jiang N, Hu J, Li Y, Zhou N, Zhang D (2022) Preparing water-based phosphorylated PEEK sizing agent for CF/PEEK interface enhancement. Compos Sci Technol 217:109096CrossRef
26.
go back to reference Li Z, Wang W, Han Y, Zhang L, Li S, Tang B, Xu S, Xu Z (2018) Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183CrossRef Li Z, Wang W, Han Y, Zhang L, Li S, Tang B, Xu S, Xu Z (2018) Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183CrossRef
27.
go back to reference Li Z, Cao T, Zhang Y, Han Y, Xu S, Xu Z (2017) Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone). J Membr Sci 540:422–429CrossRef Li Z, Cao T, Zhang Y, Han Y, Xu S, Xu Z (2017) Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone). J Membr Sci 540:422–429CrossRef
28.
go back to reference Li H, Zhang B, Lin B, Yang Y, Zhao Y, Wang L (2018) Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J Electrochem Soc 165:A939–A946CrossRef Li H, Zhang B, Lin B, Yang Y, Zhao Y, Wang L (2018) Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J Electrochem Soc 165:A939–A946CrossRef
29.
go back to reference Li H, Zhang B, Liu W et al (2018) Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries. Electrochim Acta 290:150–164CrossRef Li H, Zhang B, Liu W et al (2018) Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries. Electrochim Acta 290:150–164CrossRef
30.
go back to reference Li D, Shi D, Feng K, Li X, Zhang H (2017) Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci 530:125–131CrossRef Li D, Shi D, Feng K, Li X, Zhang H (2017) Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J Membr Sci 530:125–131CrossRef
31.
go back to reference Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, Lee YM, Drioli E (2014) PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Membr Sci 471:237–246CrossRef Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, Lee YM, Drioli E (2014) PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Membr Sci 471:237–246CrossRef
32.
go back to reference Li M, Zhang Z, Yin Y et al (2020) Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces 12:3610–3616CrossRef Li M, Zhang Z, Yin Y et al (2020) Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces 12:3610–3616CrossRef
33.
go back to reference Yuan M, Liu K (2020) Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J Energy Chem 43:58–70CrossRef Yuan M, Liu K (2020) Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J Energy Chem 43:58–70CrossRef
34.
go back to reference Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym 230:115570CrossRef Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym 230:115570CrossRef
35.
go back to reference Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 142:330–336CrossRef Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 142:330–336CrossRef
37.
go back to reference Lagadec MF, Zahn R, Wood V (2018) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25CrossRef Lagadec MF, Zahn R, Wood V (2018) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25CrossRef
38.
go back to reference Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242CrossRef Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242CrossRef
39.
go back to reference Wang Y, Duan J, Du X et al (2021) High performance of polyethylene composite separators modified by carbon nanotube, lithium salt and SiO2 nanoparticles for lithium ion batteries. Compos Commun 28:100976CrossRef Wang Y, Duan J, Du X et al (2021) High performance of polyethylene composite separators modified by carbon nanotube, lithium salt and SiO2 nanoparticles for lithium ion batteries. Compos Commun 28:100976CrossRef
40.
go back to reference Jamalpour S, Ghahramani M, Ghaffarian SR, Javanbakht M (2021) Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride). Polymer 228:123924CrossRef Jamalpour S, Ghahramani M, Ghaffarian SR, Javanbakht M (2021) Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride). Polymer 228:123924CrossRef
41.
go back to reference Zhou M, Feng C, Xiong R, Li L, Huang T, Li M, Zhang Y, Zhou M (2022) Molecular insights into the structure and property variation of the pressure-induced solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 14:24875–24885CrossRef Zhou M, Feng C, Xiong R, Li L, Huang T, Li M, Zhang Y, Zhou M (2022) Molecular insights into the structure and property variation of the pressure-induced solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 14:24875–24885CrossRef
42.
go back to reference Li H, Niu D, Zhou H, Chao C, Wu L, Han P (2018) Preparation and characterization of PVDF separators for lithium ion cells using hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) as additive. Appl Surf Sci 440:186–192CrossRef Li H, Niu D, Zhou H, Chao C, Wu L, Han P (2018) Preparation and characterization of PVDF separators for lithium ion cells using hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) as additive. Appl Surf Sci 440:186–192CrossRef
43.
go back to reference Xu R, Sheng L, Gong H et al (2021) High-performance Al2O3/PAALi composite separator prepared by water-based slurry for high-power density lithium-based battery. Adv Eng Mater 23:2001009CrossRef Xu R, Sheng L, Gong H et al (2021) High-performance Al2O3/PAALi composite separator prepared by water-based slurry for high-power density lithium-based battery. Adv Eng Mater 23:2001009CrossRef
Metadata
Title
Lithiated poly (ether ether ketone) separators with excellent thermal stability and electrolyte wettability for lithium-ion battery
Authors
Longhui Li
Ruoyu Xiong
Xuyang Wang
Mengyuan Zhou
Shuang Sun
Guancheng Shen
Lan Song
Yun Zhang
Huamin Zhou
Publication date
15-10-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 40/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07761-0

Other articles of this Issue 40/2022

Journal of Materials Science 40/2022 Go to the issue

Premium Partners