Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Lithiumionen-Batterien

Author : Peter Kurzweil, Prof. Dr.

Published in: Elektrochemische Speicher

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Lithiumbatterien gelten als Stand der Technik für vielfältige portable Anwendungen bis hin zu Elektroantrieben. Wiederaufladbare Lithiumionen-Akkumulatoren, engl. secondary batteries, unterscheiden sich von den nicht wiederverwendbaren Primärbatterien. Dennoch wird Begriff „Lithiumbatterie“ für Akkumulatoren gebraucht. Das Kapitel beleuchtet den Stand der Technik von den heutigen Materialien, Technologien und Herstellverfahren bis zur jüngsten Forschung. Betriebsverhalten, Alterung, messtechnische Überwachung und Modellierung von Lithiumionen-Batterien wird eingehend betrachtet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bockris, J.O.M., Conway, B.E., Yeager, E., White, R.E. (Hrsg.): Comprehensive treatise of electrochemistry, Bd. 3: Electrochemical energy conversion and storage (1981). Nachdruck: Springer, Berlin (2013) Bockris, J.O.M., Conway, B.E., Yeager, E., White, R.E. (Hrsg.): Comprehensive treatise of electrochemistry, Bd. 3: Electrochemical energy conversion and storage (1981). Nachdruck: Springer, Berlin (2013)
2.
go back to reference Daniel, C., Besenhard, J.O. (Hrsg.): Handbook of Battery Materials. Wiley-VCH, Weinheim (2011) Daniel, C., Besenhard, J.O. (Hrsg.): Handbook of Battery Materials. Wiley-VCH, Weinheim (2011)
3.
go back to reference Graf, Ch.: Kathodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 4, S. 31–44. Springer, Berlin (2013) Graf, Ch.: Kathodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 4, S. 31–44. Springer, Berlin (2013)
4.
go back to reference Huggins, A.R.: Advanced batteries – materials science aspects. Springer, Berlin (2009) Huggins, A.R.: Advanced batteries – materials science aspects. Springer, Berlin (2009)
5.
go back to reference Kinoshita, K.: Carbon, electrochemical and physicochemical properties. Wiley, New York (1988) Kinoshita, K.: Carbon, electrochemical and physicochemical properties. Wiley, New York (1988)
6.
go back to reference Kurzweil, P.: Lithium battery energy storage: state of the art including lithium-air and lithium-sulfur systems. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical energy storage for renewable sources and grid balancing, Kap. 16, S. 269–307. Elsevier, Amsterdam (2015) Kurzweil, P.: Lithium battery energy storage: state of the art including lithium-air and lithium-sulfur systems. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical energy storage for renewable sources and grid balancing, Kap. 16, S. 269–307. Elsevier, Amsterdam (2015)
7.
go back to reference Kurzweil, P., Brandt, K.: Overview: Lithium rechargeable systems. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 1–26. Elsevier, Amsterdam (2009) Kurzweil, P., Brandt, K.: Overview: Lithium rechargeable systems. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 1–26. Elsevier, Amsterdam (2009)
8.
go back to reference Kurzweil, P.: Chemie, Kap. 9: Elektrochemie, 10. Aufl. Springer Vieweg, Wiesbaden (2015) Kurzweil, P.: Chemie, Kap. 9: Elektrochemie, 10. Aufl. Springer Vieweg, Wiesbaden (2015)
9.
go back to reference Linden, D., Reddy, T.B. (Hrsg.): Handbook of Batteries. McGraw-Hill, New York (2001) Linden, D., Reddy, T.B. (Hrsg.): Handbook of Batteries. McGraw-Hill, New York (2001)
10.
go back to reference Ohno, H.: Ionic liquids. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 153–159. Elsevier, Amsterdam (2009) Ohno, H.: Ionic liquids. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 153–159. Elsevier, Amsterdam (2009)
11.
go back to reference Park, J.-K.: Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim (2012) Park, J.-K.: Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim (2012)
12.
go back to reference Peukert, W.: Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechn. Z. (ETZ) 18, 287–288 (1897) Peukert, W.: Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechn. Z. (ETZ) 18, 287–288 (1897)
14.
go back to reference Salomon, M.: Electrolytes I. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 134–139. Elsevier, Amsterdam (2009) Salomon, M.: Electrolytes I. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 134–139. Elsevier, Amsterdam (2009)
15.
go back to reference Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013) Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)
16.
go back to reference Wurm, C., Öttinger, O., Wittkämper, S., Zauter, R., Vuorilehto, K.: Anodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 5, S. 45–60. Springer, Berlin (2013) Wurm, C., Öttinger, O., Wittkämper, S., Zauter, R., Vuorilehto, K.: Anodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 5, S. 45–60. Springer, Berlin (2013)
17.
go back to reference Appetecchi, G.B., Croce, F., Scrosati, B.: Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta 40(8), 991–997 (1995) Appetecchi, G.B., Croce, F., Scrosati, B.: Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta 40(8), 991–997 (1995)
18.
go back to reference Balakrishnan, P.G., Ramesh, R., Prem Kumar, T.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006) Balakrishnan, P.G., Ramesh, R., Prem Kumar, T.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006)
19.
go back to reference Balbuena, P.B., Wang, Y.X. (Hrsg.): Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, London (2004) Balbuena, P.B., Wang, Y.X. (Hrsg.): Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, London (2004)
20.
go back to reference Barpanda, P., Nishimura, S.: High-voltage pyrophosphate cathodes. Adv. Energy Mater. 2(7), 841–859 (2012) Barpanda, P., Nishimura, S.: High-voltage pyrophosphate cathodes. Adv. Energy Mater. 2(7), 841–859 (2012)
23.
go back to reference Chikkannanavar, S.B., Bernardi, D.M., Liu, L.: A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91–100 (2014) Chikkannanavar, S.B., Bernardi, D.M., Liu, L.: A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91–100 (2014)
24.
go back to reference Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–598 (1995) Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–598 (1995)
25.
go back to reference Dorn, R., Schwartz, R., Steurich, B.: Batteriemanagementsystem. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 14, S. 177–187. Springer, Berlin (2013) Dorn, R., Schwartz, R., Steurich, B.: Batteriemanagementsystem. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 14, S. 177–187. Springer, Berlin (2013)
26.
go back to reference Dou, S.: Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J. Solid State Electrochem. 17(4), 911–926 (2013) Dou, S.: Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J. Solid State Electrochem. 17(4), 911–926 (2013)
27.
29.
go back to reference Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009) Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)
30.
go back to reference Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 1–5 (2010) Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 1–5 (2010)
32.
go back to reference Inaba, M.: Negative electrodes: graphite. In: Encyclopedia of electrochemical power sources, Bd. 5, S. 198–208. Elsevier, Amsterdam (2009) Inaba, M.: Negative electrodes: graphite. In: Encyclopedia of electrochemical power sources, Bd. 5, S. 198–208. Elsevier, Amsterdam (2009)
33.
go back to reference Inoue, H.: 6th Shenzhen International Lithium-Ion Battery Summit. Shenzhen, China (2011) Inoue, H.: 6th Shenzhen International Lithium-Ion Battery Summit. Shenzhen, China (2011)
34.
go back to reference (a) Kampker, A., Hohenthanner, C.-R., Deutskens, Ch., Heimes, H.H., Sesterheim, Ch.: Fertigungsverfahren von Lithium-Ionen-Zellen und -Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 18, S. 237–247. Springer, Berlin (2013) (b) Pettinger, K.-H.: Fertigungsprozesse von Lithium-Ionen-Zellen. Kap. 17, S. 221–235 (c) Pettinger, K.-H.: Prüfverfahren in der Fertigung. Kap. 20, S. 259–267 (a) Kampker, A., Hohenthanner, C.-R., Deutskens, Ch., Heimes, H.H., Sesterheim, Ch.: Fertigungsverfahren von Lithium-Ionen-Zellen und -Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 18, S. 237–247. Springer, Berlin (2013) (b) Pettinger, K.-H.: Fertigungsprozesse von Lithium-Ionen-Zellen. Kap. 17, S. 221–235 (c) Pettinger, K.-H.: Prüfverfahren in der Fertigung. Kap. 20, S. 259–267
35.
go back to reference Kanevskii, L.S., Dubasova, V.S.: Degradation of lithium-ion batteries and how to fight it: A review. Russ. J. Electrochem. 41(1), 1–16 (2005) Kanevskii, L.S., Dubasova, V.S.: Degradation of lithium-ion batteries and how to fight it: A review. Russ. J. Electrochem. 41(1), 1–16 (2005)
36.
go back to reference Kawai, H., Nagata, M., Tukamoto, H., West, A.R.: High-voltage lithium cathode materials. J. Power Sources 81(21), 67–72 (1999) Kawai, H., Nagata, M., Tukamoto, H., West, A.R.: High-voltage lithium cathode materials. J. Power Sources 81(21), 67–72 (1999)
37.
go back to reference Kinoshita, K., Zaghibb, K.: Negative electrodes for Li-ion batteries. J. Power Sources 110(2), 416–423 (2002) Kinoshita, K., Zaghibb, K.: Negative electrodes for Li-ion batteries. J. Power Sources 110(2), 416–423 (2002)
38.
go back to reference Kraytsberg, A., Ein-Eli, Y.: Higher, stronger, better. A review of 5 Volt cathode materials for advancedl lithium-ion batteries. Adv. Energy Mater. 2(8), 922–939 (2012) Kraytsberg, A., Ein-Eli, Y.: Higher, stronger, better. A review of 5 Volt cathode materials for advancedl lithium-ion batteries. Adv. Energy Mater. 2(8), 922–939 (2012)
39.
go back to reference Lee, J., Urban, A., Li, X., Su, D., Hautier, G., Ceder, G.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014) Lee, J., Urban, A., Li, X., Su, D., Hautier, G., Ceder, G.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014)
40.
go back to reference Limthongkul, P., Jang, Y.I., Dudney, N.J., Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003) Limthongkul, P., Jang, Y.I., Dudney, N.J., Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003)
41.
go back to reference Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011) Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)
42.
go back to reference Neubauer, J., Pesaran, A., Bae, C., Elder, R., Cunningham, B.: Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles. J. Power Sources 271, 614–621 (2014) Neubauer, J., Pesaran, A., Bae, C., Elder, R., Cunningham, B.: Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles. J. Power Sources 271, 614–621 (2014)
43.
go back to reference Noh, H.-J., Chen, Z., Yoon, Ch.S., Lu, J., Amine, K., Sun, Y-K.: Cathode material with nanorod structure – an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013) Noh, H.-J., Chen, Z., Yoon, Ch.S., Lu, J., Amine, K., Sun, Y-K.: Cathode material with nanorod structure – an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013)
44.
go back to reference Nyten, A., Abouimrane, A., Armand, M., Gustafsson, T., Thomas, T.: J. Electrochem. Commun. 7, 156–160 (2005) Nyten, A., Abouimrane, A., Armand, M., Gustafsson, T., Thomas, T.: J. Electrochem. Commun. 7, 156–160 (2005)
45.
go back to reference Ohzuku, T., Takeda, S., Iwanaga, M.J.: J. Power Sources 81/82, 90–94 (1999) Ohzuku, T., Takeda, S., Iwanaga, M.J.: J. Power Sources 81/82, 90–94 (1999)
46.
go back to reference Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phosphoolivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997) Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phosphoolivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)
47.
go back to reference PANASONIC: 3. Entwicklerforum Akkutechnologien, Aschaffenburg, 12.–15.04.2010 PANASONIC: 3. Entwicklerforum Akkutechnologien, Aschaffenburg, 12.–15.04.2010
48.
go back to reference Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S., Yoon, S.J.: Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008) Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S., Yoon, S.J.: Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008)
49.
go back to reference Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery aystems. The solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979) Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery aystems. The solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979)
51.
go back to reference Pop, V., Bergveld, H.J., Notten, P.H.L., Regtien, P.P.: State-of-the-art of battery state-of-charge determination. Meas. Sci. Technol. 16(12), R93–R110 (2005) Pop, V., Bergveld, H.J., Notten, P.H.L., Regtien, P.P.: State-of-the-art of battery state-of-charge determination. Meas. Sci. Technol. 16(12), R93–R110 (2005)
52.
go back to reference Quartarone, E., Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011) Quartarone, E., Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011)
53.
go back to reference Ritchie, A., Howard, W.: Recent developments and likely advances in lithium-ion batteries. J. Power Sources 162(2), 809–812 (2006) Ritchie, A., Howard, W.: Recent developments and likely advances in lithium-ion batteries. J. Power Sources 162(2), 809–812 (2006)
55.
go back to reference Santhanam, R., Rambabu, B.: Research progress in high voltage spinel LiNi\({}_{\mathrm{0.5}}\)Mn\({}_{\mathrm{1.5}}\)O\({}_{\mathrm{4}}\) material. J. Power Sources 195(17), 5442–5151 (2010) Santhanam, R., Rambabu, B.: Research progress in high voltage spinel LiNi\({}_{\mathrm{0.5}}\)Mn\({}_{\mathrm{1.5}}\)O\({}_{\mathrm{4}}\) material. J. Power Sources 195(17), 5442–5151 (2010)
56.
go back to reference Stevenson, K.J.: The origin, development, and future of the lithium-ion battery. J. Solid State Electrochem. 16(6), 2017–2018 (2012) Stevenson, K.J.: The origin, development, and future of the lithium-ion battery. J. Solid State Electrochem. 16(6), 2017–2018 (2012)
57.
go back to reference Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001) Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)
58.
go back to reference Terranova, M.L., Orlanducci, S., Tamburri, E., Guglielmotti, V., Rossi, M.: Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 246, 167–177 (2014) Terranova, M.L., Orlanducci, S., Tamburri, E., Guglielmotti, V., Rossi, M.: Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 246, 167–177 (2014)
59.
go back to reference Thackeray, M., Johnson, C., Vaughey, J., Li, N., Hackney, S.: Advances in manganese-oxide composite electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005) Thackeray, M., Johnson, C., Vaughey, J., Li, N., Hackney, S.: Advances in manganese-oxide composite electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005)
60.
go back to reference Tirado, J.L.: Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. Rep. 40, 103–136 (2003) Tirado, J.L.: Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. Rep. 40, 103–136 (2003)
61.
go back to reference Tuck, C.D.S.: Modern Battery Technology. Ellis Horwood, Chichester (1991) Tuck, C.D.S.: Modern Battery Technology. Ellis Horwood, Chichester (1991)
62.
go back to reference Väyrynen, A., Salminen, J.J.: Lithium ion battery production. J. Chem. Thermodyn. 46, 80–85 (2012) Väyrynen, A., Salminen, J.J.: Lithium ion battery production. J. Chem. Thermodyn. 46, 80–85 (2012)
63.
go back to reference Vetter, J., Novak, P., Wagner, M.R., et al.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269–281 (2005) Vetter, J., Novak, P., Wagner, M.R., et al.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269–281 (2005)
64.
go back to reference Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976) Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)
65.
go back to reference Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177(2), 512–527 (2008) Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177(2), 512–527 (2008)
66.
go back to reference Xu, B., Fell, Ch.R., Chi, M., Meng, Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011) Xu, B., Fell, Ch.R., Chi, M., Meng, Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011)
67.
go back to reference Zhang, C., Staunton, E., Andreev, Y.G., Bruce, P.G.: Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J. Am. Chem. Soc. 127(51), 18305–18308 (2005) Zhang, C., Staunton, E., Andreev, Y.G., Bruce, P.G.: Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J. Am. Chem. Soc. 127(51), 18305–18308 (2005)
68.
go back to reference Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006) Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006)
69.
go back to reference Zhang, S.S.: A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007) Zhang, S.S.: A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007)
70.
go back to reference Zhang, W.-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011) Zhang, W.-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)
71.
go back to reference Weniger, J.: Sonnenspeicher, Photovoltaik-Batteriespeicher für private Haushalte, c’t, Heft 2, 158–161 (2018) Weniger, J.: Sonnenspeicher, Photovoltaik-Batteriespeicher für private Haushalte, c’t, Heft 2, 158–161 (2018)
Metadata
Title
Lithiumionen-Batterien
Author
Peter Kurzweil, Prof. Dr.
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-658-21829-4_3