Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Load Control on the Future Greener Aircraft by Circulation Control

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Load control is an important topic in aerodynamics, as it can potentially provide an alternative way for drag reduction through decreasing the aircraft structure weight. To pursue ‘Green Aviation’, both new greener aircraft configurations and technologies for load control are under studying throughout the worldwide industries and academies. This paper presents a computational investigation on the load control effects by means of circulation control (CC) via blowing over trailing-edge Coanda surface on a blended-wing-body (BWB) configuration. A BWB model is firstly modified to include Coanda devices on the outer-wing, inner-wing and center-body sections with the same spanwise length. The load control effects in terms of lift reduction aiming for gust load alleviation of CC placed on different spanwise locations are evaluated and compared under steady conditions for subsonic and transonic speeds. The results show that CC has a strong capability for load control, especially for subsonic incoming flow, indicating a promising way for gust load alleviation to replace the traditional flaps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Salam IR, Bil C (2016) Multi-disciplinary analysis and optimisation methodology for conceptual design of a box-wing aircraft. Aeronaut J 120(1230):1315–1333CrossRef Salam IR, Bil C (2016) Multi-disciplinary analysis and optimisation methodology for conceptual design of a box-wing aircraft. Aeronaut J 120(1230):1315–1333CrossRef
2.
go back to reference Liebeck RH (2004) Design of the blended wing body subsonic transport. J Aircr 41(1):10–25CrossRef Liebeck RH (2004) Design of the blended wing body subsonic transport. J Aircr 41(1):10–25CrossRef
3.
go back to reference Qin N et al (2004) Aerodynamic considerations of blended wing body aircraft. Prog Aerosp Sci 40(6):321–343CrossRef Qin N et al (2004) Aerodynamic considerations of blended wing body aircraft. Prog Aerosp Sci 40(6):321–343CrossRef
4.
go back to reference Hileman JI et al (2010) Airframe design for silent fuel-efficient aircraft. J Aircr 47(3):956–969CrossRef Hileman JI et al (2010) Airframe design for silent fuel-efficient aircraft. J Aircr 47(3):956–969CrossRef
5.
go back to reference Gatlin G, Vicroy D, Carter M (2012) Experimental investigation of the low-speed aerodynamic characteristics of a 5.8-percent scale hybrid wing body configuration. In: 30th AIAA applied aerodynamics conference, Paper 2012–2669 Gatlin G, Vicroy D, Carter M (2012) Experimental investigation of the low-speed aerodynamic characteristics of a 5.8-percent scale hybrid wing body configuration. In: 30th AIAA applied aerodynamics conference, Paper 2012–2669
6.
go back to reference Bahr CJ et al (2014) Acoustic data processing and transient signal analysis for the hybrid wing body 14- by 22-foot subsonic wind tunnel test. In: 20th AIAA/CEAS aeroacoustics conference, Paper 2014–2345 Bahr CJ et al (2014) Acoustic data processing and transient signal analysis for the hybrid wing body 14- by 22-foot subsonic wind tunnel test. In: 20th AIAA/CEAS aeroacoustics conference, Paper 2014–2345
7.
go back to reference Lyu Z, Martins JRRA (2014) Aerodynamic design optimization studies of a blended-wing-body aircraft. J Aircr 51(5):1604–1617CrossRef Lyu Z, Martins JRRA (2014) Aerodynamic design optimization studies of a blended-wing-body aircraft. J Aircr 51(5):1604–1617CrossRef
8.
go back to reference Li Y, Qin N (2020) Influence of spanwise load distribution on blended-wing–body performance at transonic speed. J Airc 0(0):1–10 Li Y, Qin N (2020) Influence of spanwise load distribution on blended-wing–body performance at transonic speed. J Airc 0(0):1–10
9.
go back to reference Colliss SP et al (2016) Vortical structures on three-dimensional shock control bumps. J Aircr 53(4):2338–2350 Colliss SP et al (2016) Vortical structures on three-dimensional shock control bumps. J Aircr 53(4):2338–2350
10.
go back to reference Bruce KPJ, Babinsky H (2012) Eexperimental study into the flow physics of three-dimensional shock control bumps. J Airc 49(5):1222–1233 Bruce KPJ, Babinsky H (2012) Eexperimental study into the flow physics of three-dimensional shock control bumps. J Airc 49(5):1222–1233
11.
go back to reference König B et al (2009) Numerical and experimental validation of three-dimensional shock control bumps. J Aircr 46(2):675–682CrossRef König B et al (2009) Numerical and experimental validation of three-dimensional shock control bumps. J Aircr 46(2):675–682CrossRef
12.
go back to reference Ogawa H et al (2008) Shock-Wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J 46(6):1442–1452CrossRef Ogawa H et al (2008) Shock-Wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J 46(6):1442–1452CrossRef
13.
go back to reference Messing R, Kloker MJ (2010) Investigation of suction for laminar flow control of three-dimensional boundary layers. J Fluid Mech 658:117–147CrossRefMATH Messing R, Kloker MJ (2010) Investigation of suction for laminar flow control of three-dimensional boundary layers. J Fluid Mech 658:117–147CrossRefMATH
14.
go back to reference Chernoray VG et al (2005) Experiments on secondary instability of streamwise vortices in a swept-wing boundary layer. J Fluid Mech 534:295–325MathSciNetCrossRefMATH Chernoray VG et al (2005) Experiments on secondary instability of streamwise vortices in a swept-wing boundary layer. J Fluid Mech 534:295–325MathSciNetCrossRefMATH
15.
go back to reference Krishnan KSG, Bertram O, Seibel O (2017) Review of hybrid laminar flow control systems. Prog Aerosp Sci 93:24–52CrossRef Krishnan KSG, Bertram O, Seibel O (2017) Review of hybrid laminar flow control systems. Prog Aerosp Sci 93:24–52CrossRef
17.
go back to reference Ashill PR, Fulker JL, Hackett KC (2005) A review of recent developments in flow control. Aeronaut J 109(1095):205–232CrossRef Ashill PR, Fulker JL, Hackett KC (2005) A review of recent developments in flow control. Aeronaut J 109(1095):205–232CrossRef
18.
go back to reference Joslin RD (1998) Overview of Laminar Flow Control—NASA/TP-1998–208705. Sponsoring Organization: NASA Langley Research Center Joslin RD (1998) Overview of Laminar Flow Control—NASA/TP-1998–208705. Sponsoring Organization: NASA Langley Research Center
19.
go back to reference Boeing Commercial Aircraft Company (1982) Hybrid laminar flow control study final report, NASA-CR-165930 Boeing Commercial Aircraft Company (1982) Hybrid laminar flow control study final report, NASA-CR-165930
20.
go back to reference Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55(7):1–28CrossRef Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55(7):1–28CrossRef
21.
go back to reference Fuaad PA, Baig MF, Khan BA (2016) Turbulent drag reduction using active control of buoyancy forces. Int J Heat Fluid Flow 61:585–598CrossRef Fuaad PA, Baig MF, Khan BA (2016) Turbulent drag reduction using active control of buoyancy forces. Int J Heat Fluid Flow 61:585–598CrossRef
22.
go back to reference Ahmad H, Baig MF, Fuaad PA (2015) Numerical investigation of turbulent-drag reduction induced by active control of streamwise travelling waves of wall-normal velocity. Eur J Mech/B Fluids 49:250–263CrossRef Ahmad H, Baig MF, Fuaad PA (2015) Numerical investigation of turbulent-drag reduction induced by active control of streamwise travelling waves of wall-normal velocity. Eur J Mech/B Fluids 49:250–263CrossRef
23.
go back to reference Wang Y-S, Huang W-X, Xu C-X (2016) Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn Res 48(5):055501MathSciNetCrossRef Wang Y-S, Huang W-X, Xu C-X (2016) Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn Res 48(5):055501MathSciNetCrossRef
24.
go back to reference Guo S, Los J, Liu Y (2015) Gust alleviation of a large aircraft with a passive twist wingtip. Aerospace 2(2):135–154CrossRef Guo S, Los J, Liu Y (2015) Gust alleviation of a large aircraft with a passive twist wingtip. Aerospace 2(2):135–154CrossRef
25.
go back to reference Hu J, Wang R, Huang D (2018) Flow control mechanisms of a combined approach using blade slot and vortex generator in compressor cascade. Aerosp Sci Technol 78:320–331CrossRef Hu J, Wang R, Huang D (2018) Flow control mechanisms of a combined approach using blade slot and vortex generator in compressor cascade. Aerosp Sci Technol 78:320–331CrossRef
26.
go back to reference Itsariyapinyo P, Sharma RN (2018) Large Eddy simulation of a NACA0015 circulation control airfoil using synthetic jets. Aerosp Sci Technol 82–83:545–556CrossRef Itsariyapinyo P, Sharma RN (2018) Large Eddy simulation of a NACA0015 circulation control airfoil using synthetic jets. Aerosp Sci Technol 82–83:545–556CrossRef
27.
go back to reference Shmilovich A, Yadlin Y (2011) Flow control techniques for transport aircraft. AIAA J 49(3):489–502CrossRef Shmilovich A, Yadlin Y (2011) Flow control techniques for transport aircraft. AIAA J 49(3):489–502CrossRef
28.
go back to reference Hammerton JR et al (2018) Optimum distributed wing shaping and control loads for highly flexible aircraft. Aerosp Sci Technol 79:255–265CrossRef Hammerton JR et al (2018) Optimum distributed wing shaping and control loads for highly flexible aircraft. Aerosp Sci Technol 79:255–265CrossRef
29.
go back to reference Yousefi K, Saleh R, Zahedi P (2014) Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil. J Mech Sci Technol 28(4):1297–1310CrossRef Yousefi K, Saleh R, Zahedi P (2014) Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil. J Mech Sci Technol 28(4):1297–1310CrossRef
30.
go back to reference Luedke J et al (2005) Characterization of steady blowing for flow control in a hump diffuser. AIAA J 43(8):1644–1652CrossRef Luedke J et al (2005) Characterization of steady blowing for flow control in a hump diffuser. AIAA J 43(8):1644–1652CrossRef
31.
go back to reference Chen C, Seele R, Wygnanski I (2013) Flow control on a thick airfoil using suction compared to blowing. AIAA J 51(6):1462–1472CrossRef Chen C, Seele R, Wygnanski I (2013) Flow control on a thick airfoil using suction compared to blowing. AIAA J 51(6):1462–1472CrossRef
32.
go back to reference Zhang H et al (2018) Flow separation control using unsteady pulsed suction through endwall bleeding holes in a highly loaded compressor cascade. Aerosp Sci Technol 72:455–464CrossRef Zhang H et al (2018) Flow separation control using unsteady pulsed suction through endwall bleeding holes in a highly loaded compressor cascade. Aerosp Sci Technol 72:455–464CrossRef
33.
go back to reference Greenblatt D, Wygnanski IJ (2000) The control of flow separation by periodic excitation. Prog Aerosp Sci 36(7):487–545CrossRef Greenblatt D, Wygnanski IJ (2000) The control of flow separation by periodic excitation. Prog Aerosp Sci 36(7):487–545CrossRef
34.
go back to reference Gebhardt A, Kirz J (2018) Numerical investigation of slot variations on the efficiency of tangential blowing at a vertical tailplane with infinite span. Official J Counc Eur Aerosp Soc 9(1):195–206 Gebhardt A, Kirz J (2018) Numerical investigation of slot variations on the efficiency of tangential blowing at a vertical tailplane with infinite span. Official J Counc Eur Aerosp Soc 9(1):195–206
35.
go back to reference Alexander MG et al (2005) Trailing edge blowing on a two-dimensional six-percent thick elliptical circulation control airfoil up to transonic conditions—NASA/TM-2005–213545. 2005, Sponsoring Organization: NASA Langley Research Center Alexander MG et al (2005) Trailing edge blowing on a two-dimensional six-percent thick elliptical circulation control airfoil up to transonic conditions—NASA/TM-2005–213545. 2005, Sponsoring Organization: NASA Langley Research Center
36.
go back to reference Min B-Y et al (2009) Numerical investigation of circulation control airfoils. J Aircr 46(4):1403–1410CrossRef Min B-Y et al (2009) Numerical investigation of circulation control airfoils. J Aircr 46(4):1403–1410CrossRef
37.
go back to reference Forster M, Steijl R (2017) Design study of Coanda devices for transonic circulation control. Aeronaut J 121(1243):1368–1391CrossRef Forster M, Steijl R (2017) Design study of Coanda devices for transonic circulation control. Aeronaut J 121(1243):1368–1391CrossRef
38.
go back to reference Cook MV, Buonanno A, Erbslöh SD (2016) A circulation control actuator for flapless flight control. Aeronaut J 112(1134):483–489CrossRef Cook MV, Buonanno A, Erbslöh SD (2016) A circulation control actuator for flapless flight control. Aeronaut J 112(1134):483–489CrossRef
39.
go back to reference Li Y, Qin N (2020) Airfoil gust load alleviation by circulation control. Aerosp Sci Technol 98:105622CrossRef Li Y, Qin N (2020) Airfoil gust load alleviation by circulation control. Aerosp Sci Technol 98:105622CrossRef
40.
go back to reference Hoholis G, Steijl R, Badcock K (2016) Circulation control as a roll effector for unmanned combat aerial vehicles. J Aircr 53(6):1875–1889CrossRef Hoholis G, Steijl R, Badcock K (2016) Circulation control as a roll effector for unmanned combat aerial vehicles. J Aircr 53(6):1875–1889CrossRef
41.
go back to reference Forster M, Steijl R (2015) Numerical simulation of transonic circulation control. In: 53rd AIAA aerospace sciences meeting. AIAA, pp 2015–1709 Forster M, Steijl R (2015) Numerical simulation of transonic circulation control. In: 53rd AIAA aerospace sciences meeting. AIAA, pp 2015–1709
42.
go back to reference Krist SL, Rumsey CL, Biedron RT (1998) CFL3D User's Manual (Version 5.0)—NASA/TM-1998–208444. Sponsoring Organization: NASA Langley Research Center Krist SL, Rumsey CL, Biedron RT (1998) CFL3D User's Manual (Version 5.0)—NASA/TM-1998–208444. Sponsoring Organization: NASA Langley Research Center
Metadata
Title
Load Control on the Future Greener Aircraft by Circulation Control
Authors
Yonghong Li
Ning Qin
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-12019-0_8

Premium Partner