Skip to main content
Top

2017 | Supplement | Chapter

Long Time Dynamics and Coherent States in Nonlinear Wave Equations

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss recent progress in finding all coherent states supported by nonlinear wave equations, their stability and the long time behavior of nearby solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. A. Adams, Sobolev Spaces. Academic Press, New York, 1975.MATH R. A. Adams, Sobolev Spaces. Academic Press, New York, 1975.MATH
2.
go back to reference A. Ambrosetti, M. Badiale, S. Cingolani, “Semiclassical states of nonlinear Schrödinger equations with bounded potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7 (1996), no. 3, 155–160. A. Ambrosetti, M. Badiale, S. Cingolani, “Semiclassical states of nonlinear Schrödinger equations with bounded potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7 (1996), no. 3, 155–160.
3.
go back to reference W.H. Aschbacher, J. Fröhlich, G.M. Graf, K. Schnee, and M. Troyer, “Symmetry breaking regime in the nonlinear hartree equation”, J. Math. Phys. 43, 3879–3891 (2002).MathSciNetCrossRefMATH W.H. Aschbacher, J. Fröhlich, G.M. Graf, K. Schnee, and M. Troyer, “Symmetry breaking regime in the nonlinear hartree equation”, J. Math. Phys. 43, 3879–3891 (2002).MathSciNetCrossRefMATH
4.
go back to reference D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math. 133 (2011), no. 5, 1421–1468.MathSciNetCrossRefMATH D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math. 133 (2011), no. 5, 1421–1468.MathSciNetCrossRefMATH
5.
go back to reference V. Benci, D. Fortunato, Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices. Springer Monographs in Mathematics. Springer Cham Heidelberg New York Dordrecht London, 2014. V. Benci, D. Fortunato, Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices. Springer Monographs in Mathematics. Springer Cham Heidelberg New York Dordrecht London, 2014.
6.
go back to reference H. Berestycki, P.-L. Lion, “Nonlinear scalar field equations”, Arch. Ration. Mech. Anal. 82 (1983) 313–375. H. Berestycki, P.-L. Lion, “Nonlinear scalar field equations”, Arch. Ration. Mech. Anal. 82 (1983) 313–375.
7.
go back to reference N. Boussaid, E. Kirr, “Asymptotic stability of ground states in Dirac equation”, in preparation. N. Boussaid, E. Kirr, “Asymptotic stability of ground states in Dirac equation”, in preparation.
8.
go back to reference B. Buffoni, J. Toland, Analytic theory of global bifurcation. An introduction. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2003. B. Buffoni, J. Toland, Analytic theory of global bifurcation. An introduction. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2003.
9.
go back to reference V. S. Buslaev, G. S. Perelman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”. St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142. V. S. Buslaev, G. S. Perelman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”. St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142.
10.
go back to reference V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”. Nonlinear evolution equations, 75–98, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995. V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”. Nonlinear evolution equations, 75–98, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995.
11.
go back to reference V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, 419–475.MathSciNetCrossRefMATH V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, 419–475.MathSciNetCrossRefMATH
12.
go back to reference T. Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics (New York University Courant Institute of Mathematical Sciences, New York, 2003). T. Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics (New York University Courant Institute of Mathematical Sciences, New York, 2003).
13.
14.
go back to reference S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys. 284 (2008), no. 1, 51–77.MathSciNetCrossRefMATH S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys. 284 (2008), no. 1, 51–77.MathSciNetCrossRefMATH
15.
go back to reference A. Floer and A. Weinstein, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69, 397–408 (1986).MathSciNetCrossRefMATH A. Floer and A. Weinstein, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69, 397–408 (1986).MathSciNetCrossRefMATH
16.
go back to reference M. Golubitsky, I. Stewart, D. G. Schaeffer, Singularities and groups in bifurcation theory, Vol. II. Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988. M. Golubitsky, I. Stewart, D. G. Schaeffer, Singularities and groups in bifurcation theory, Vol. II. Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988.
17.
go back to reference M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math. 41, 747–774 (1988).MathSciNetCrossRefMATH M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math. 41, 747–774 (1988).MathSciNetCrossRefMATH
18.
go back to reference M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I,”, J. Funct. Anal. 74 (1987), no. 1, 160–197.MathSciNetCrossRefMATH M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I,”, J. Funct. Anal. 74 (1987), no. 1, 160–197.MathSciNetCrossRefMATH
19.
go back to reference M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal. 94 (1990), no. 2, 308–348.MathSciNetCrossRefMATH M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal. 94 (1990), no. 2, 308–348.MathSciNetCrossRefMATH
20.
go back to reference Y. Guo, R. Seiringer, “On the mass concentration for Bose-Einstein condensates with attractive interactions.” Lett. Math. Phys. 104 (2014), no. 2, 141–156.MathSciNetCrossRefMATH Y. Guo, R. Seiringer, “On the mass concentration for Bose-Einstein condensates with attractive interactions.” Lett. Math. Phys. 104 (2014), no. 2, 141–156.MathSciNetCrossRefMATH
21.
go back to reference S. Gustafson, K. Nakanishi, T.-P. Tsai, “Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves”. Int. Math. Res. Not. 2004, no. 66, 3559–3584. S. Gustafson, K. Nakanishi, T.-P. Tsai, “Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves”. Int. Math. Res. Not. 2004, no. 66, 3559–3584.
22.
go back to reference R. K. Jackson, communication at SIAM Conference on Nonlinear Waves, Philadelphia, Aug. 2010. R. K. Jackson, communication at SIAM Conference on Nonlinear Waves, Philadelphia, Aug. 2010.
23.
go back to reference R. K. Jackson, M. I. Weinstein, “Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation.” J. Statist. Phys. 116 (2004), no. 1–4, 881–905.MathSciNetCrossRefMATH R. K. Jackson, M. I. Weinstein, “Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation.” J. Statist. Phys. 116 (2004), no. 1–4, 881–905.MathSciNetCrossRefMATH
24.
go back to reference H. Jeanjean, M. Lucia and C. Stuart, “Branches of solutions to semilinear elliptic equations on \({R}^{N}\)”, Math. Z. 230, 79–105 (1999).MathSciNetCrossRefMATH H. Jeanjean, M. Lucia and C. Stuart, “Branches of solutions to semilinear elliptic equations on \({R}^{N}\)”, Math. Z. 230, 79–105 (1999).MathSciNetCrossRefMATH
25.
go back to reference H. Jeanjean, M. Lucia and C. Stuart, “ The branche of positive solutions to a semilinear elliptic equation on \({R}^{N}\)”, Rend. Sem. Mat. Univ. Padova, 101, 229–262 (1999).MathSciNetMATH H. Jeanjean, M. Lucia and C. Stuart, “ The branche of positive solutions to a semilinear elliptic equation on \({R}^{N}\)”, Rend. Sem. Mat. Univ. Padova, 101, 229–262 (1999).MathSciNetMATH
26.
go back to reference P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, “Vortices in Bose-Einstein Condensates: (Super)fluids with a twist”, SIAM Dynamical Systems Magazine, October, 2011.MATH P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, “Vortices in Bose-Einstein Condensates: (Super)fluids with a twist”, SIAM Dynamical Systems Magazine, October, 2011.MATH
27.
go back to reference E.W. Kirr, P.G. Kevrekidis, E. Shlizerman, and M.I. Weinstein, “Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations”, SIAM J. Math. Anal. 40, 56–604 (2008).CrossRefMATH E.W. Kirr, P.G. Kevrekidis, E. Shlizerman, and M.I. Weinstein, “Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations”, SIAM J. Math. Anal. 40, 56–604 (2008).CrossRefMATH
28.
go back to reference E. Kirr, P.G. Kevrekidis, D. Pelinovsky, “Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials”, Commun. Math. Phys. 308 (2011), 795–844CrossRefMATH E. Kirr, P.G. Kevrekidis, D. Pelinovsky, “Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials”, Commun. Math. Phys. 308 (2011), 795–844CrossRefMATH
29.
go back to reference E. Kirr, A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation Comm. Math. Phys. 272 (2007), no. 2, 443–468.MathSciNetCrossRefMATH E. Kirr, A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation Comm. Math. Phys. 272 (2007), no. 2, 443–468.MathSciNetCrossRefMATH
30.
go back to reference E. Kirr, A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases, J. Differential Equations 247 (2009), no. 3, 710–735.MathSciNetCrossRefMATH E. Kirr, A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases, J. Differential Equations 247 (2009), no. 3, 710–735.MathSciNetCrossRefMATH
31.
go back to reference E. Kirr, A. Zarnescu, Asymptotic stability of large ground states in nonlinear Schrödinger equation, in preparation. E. Kirr, A. Zarnescu, Asymptotic stability of large ground states in nonlinear Schrödinger equation, in preparation.
32.
go back to reference E. Kirr and Ö. Mızrak, “Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases”, J. Funct. Anal. 257, 3691–3747 (2009).MathSciNetCrossRefMATH E. Kirr and Ö. Mızrak, “Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases”, J. Funct. Anal. 257, 3691–3747 (2009).MathSciNetCrossRefMATH
33.
go back to reference E. Kirr and Ö Mızrak, “ On the stability of ground states in 4D and 5D nonlinear Schrödinger equation including subcritical cases” submitted to Int. Math. Res. Not. available online at: http://arxiv.org/abs/0906.3732 E. Kirr and Ö Mızrak, “ On the stability of ground states in 4D and 5D nonlinear Schrödinger equation including subcritical cases” submitted to Int. Math. Res. Not. available online at: http://​arxiv.​org/​abs/​0906.​3732
34.
go back to reference E. Kirr, P.G. Keverekidis and V. Natarajan, “Bifurcations of large ground states in one dimensional nonlinear Schrödinger equation”, in preparation. E. Kirr, P.G. Keverekidis and V. Natarajan, “Bifurcations of large ground states in one dimensional nonlinear Schrödinger equation”, in preparation.
35.
go back to reference E. Kirr and V. Natarajan, “The global bifurcation picture for coherent states in nonlinear Schrödinger equation”, in preparation. E. Kirr and V. Natarajan, “The global bifurcation picture for coherent states in nonlinear Schrödinger equation”, in preparation.
36.
go back to reference P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. I.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 109–145.MathSciNetCrossRefMATH P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. I.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 109–145.MathSciNetCrossRefMATH
37.
go back to reference P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. II.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 223–283.MathSciNetCrossRefMATH P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. II.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 223–283.MathSciNetCrossRefMATH
38.
go back to reference J.L. Marzuola and M.I. Weinstein, “Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross–Pitaevskii equations”, DCDS-A, to be published (2010).MATH J.L. Marzuola and M.I. Weinstein, “Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross–Pitaevskii equations”, DCDS-A, to be published (2010).MATH
39.
go back to reference T. Mizumachi, “Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 48 (2008), 471–497.MathSciNetCrossRefMATH T. Mizumachi, “Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 48 (2008), 471–497.MathSciNetCrossRefMATH
40.
go back to reference T. Mizumachi, “Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 47 (2007), no. 3, 599–620.MathSciNetCrossRefMATH T. Mizumachi, “Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 47 (2007), no. 3, 599–620.MathSciNetCrossRefMATH
41.
go back to reference L. Nirenberg, Topics in nonlinear functional analysis, Courant Lecture Notes 6 (New York, 2001). L. Nirenberg, Topics in nonlinear functional analysis, Courant Lecture Notes 6 (New York, 2001).
42.
go back to reference E. S. Noussair, S. Yan, “On positive multipeak solutions of a nonlinear elliptic problem.” J. London Math. Soc. (2) 62 (2000), no. 1, 213–227. E. S. Noussair, S. Yan, “On positive multipeak solutions of a nonlinear elliptic problem.” J. London Math. Soc. (2) 62 (2000), no. 1, 213–227.
43.
go back to reference Y.-G. Oh, “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential”, Comm. Math. Phys. 131 (1990), no. 2, 223–253.MathSciNetCrossRefMATH Y.-G. Oh, “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential”, Comm. Math. Phys. 131 (1990), no. 2, 223–253.MathSciNetCrossRefMATH
44.
go back to reference C.A. Pillet, C.E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Diff. Eqs. 141, 310–326 (1997).MathSciNetCrossRefMATH C.A. Pillet, C.E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Diff. Eqs. 141, 310–326 (1997).MathSciNetCrossRefMATH
45.
46.
go back to reference M. Reed and B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators. Volume IV. Academic Press San Diego New York Boston London Sydney Tokyo Toronto, 1972. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators. Volume IV. Academic Press San Diego New York Boston London Sydney Tokyo Toronto, 1972.
47.
go back to reference H.A. Rose and M.I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30, 207–218 (1988).MathSciNetCrossRefMATH H.A. Rose and M.I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30, 207–218 (1988).MathSciNetCrossRefMATH
48.
go back to reference I. M. Sigal, G. Zhou, “Asymptotic stability of nonlinear Schrödinger equations with potential”. Rev. Math. Phys. 17 (2005), no. 10, 1143–1207.MathSciNetCrossRefMATH I. M. Sigal, G. Zhou, “Asymptotic stability of nonlinear Schrödinger equations with potential”. Rev. Math. Phys. 17 (2005), no. 10, 1143–1207.MathSciNetCrossRefMATH
49.
go back to reference A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys. 133, 119–146 (1990).MathSciNetCrossRefMATH A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys. 133, 119–146 (1990).MathSciNetCrossRefMATH
50.
go back to reference A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data” J. Diff. Eqs. 98, 376–390 (1992).MathSciNetCrossRefMATH A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data” J. Diff. Eqs. 98, 376–390 (1992).MathSciNetCrossRefMATH
51.
go back to reference A. Soffer, M. I. Weinstein, Selection of the ground state for nonlinear Schroedinger equations, Rev. Math. Phys. 16 (2004), no. 8, 977–1071.MathSciNetCrossRefMATH A. Soffer, M. I. Weinstein, Selection of the ground state for nonlinear Schroedinger equations, Rev. Math. Phys. 16 (2004), no. 8, 977–1071.MathSciNetCrossRefMATH
52.
go back to reference T.-P. Tsai, H.-T. Yau, Horng-Tzer Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not. 31 (2002), 1629–1673.CrossRefMATH T.-P. Tsai, H.-T. Yau, Horng-Tzer Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not. 31 (2002), 1629–1673.CrossRefMATH
53.
go back to reference T.-P. Tsai, H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations. Comm. Partial Differential Equations 27 (2002), no. 11–12, 2363–2402.MathSciNetCrossRefMATH T.-P. Tsai, H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations. Comm. Partial Differential Equations 27 (2002), no. 11–12, 2363–2402.MathSciNetCrossRefMATH
54.
go back to reference T.-P. Tsai, H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6 (2002), no. 1, 107–139.MathSciNetCrossRefMATH T.-P. Tsai, H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6 (2002), no. 1, 107–139.MathSciNetCrossRefMATH
55.
go back to reference M.I. Weinstein, “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39, 51–68 (1986).MathSciNetCrossRefMATH M.I. Weinstein, “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39, 51–68 (1986).MathSciNetCrossRefMATH
56.
go back to reference M.I. Weinstein, “Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation”, Frontiers of Applied Dynamical Systems: Reviews and Tutorials, vol. 3 (2015), 41–79.CrossRef M.I. Weinstein, “Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation”, Frontiers of Applied Dynamical Systems: Reviews and Tutorials, vol. 3 (2015), 41–79.CrossRef
57.
go back to reference G. Zhou, “Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations”, J. Math. Phys. 48 (2007), no. 5, 053509–053532.MathSciNetCrossRefMATH G. Zhou, “Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations”, J. Math. Phys. 48 (2007), no. 5, 053509–053532.MathSciNetCrossRefMATH
Metadata
Title
Long Time Dynamics and Coherent States in Nonlinear Wave Equations
Author
E. Kirr
Copyright Year
2017
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-6969-2_3

Premium Partners