Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Low-Platinum-Content Electrocatalysts for Methanol and Ethanol Electrooxidation

Authors : Meng Li, Radoslav R. Adzic

Published in: Electrocatalysis in Fuel Cells

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Methanol and ethanol, having high energy density, likely production from renewable sources, and ease of storage and distribution, are ideal combustibles for fuel cells wherein their chemical energy can be converted directly into electrical energy. However, the slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of platinum has hampered the practical application of direct alcohol fuel cells. Extensive research efforts have been dedicated to developing high-activity electrocatalysts. This chapter presents an overview of the recent progress in methanol and ethanol electrocatalysis on platinum-based materials, with special attention focused on the research effort to reduce platinum content.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gosselink JW (2002) Pathways to a more sustainable production of energy: sustainable hydrogen—a research objective for Shell. Int J Hydrogen Energ 27:1125–1129CrossRef Gosselink JW (2002) Pathways to a more sustainable production of energy: sustainable hydrogen—a research objective for Shell. Int J Hydrogen Energ 27:1125–1129CrossRef
2.
go back to reference Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3.
go back to reference Lamy C, Leger J-M, Srinivasan S (2001) Direct methanol fuel cells—from a 20th century electrochemist’s dream to a 21st century emerging technology. In: Bockris JO’M (ed) Modern aspects of electrochemistry. Plenum, New York, NY Lamy C, Leger J-M, Srinivasan S (2001) Direct methanol fuel cells—from a 20th century electrochemist’s dream to a 21st century emerging technology. In: Bockris JO’M (ed) Modern aspects of electrochemistry. Plenum, New York, NY
4.
go back to reference Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5.
go back to reference Batista EA, Hoster H, Iwasita T (2003) Analysis of FTIRS data and thermal effects during methanol oxidation on UHV-cleaned PtRu alloys. J Electroanal Chem 554–555:265–271 Batista EA, Hoster H, Iwasita T (2003) Analysis of FTIRS data and thermal effects during methanol oxidation on UHV-cleaned PtRu alloys. J Electroanal Chem 554–555:265–271
6.
go back to reference Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef
7.
go back to reference Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31CrossRef Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31CrossRef
8.
go back to reference Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674CrossRef Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674CrossRef
9.
go back to reference Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282CrossRef Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282CrossRef
10.
go back to reference Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121CrossRef Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121CrossRef
11.
go back to reference Lamy C, Belgsir EE, Leger J-M (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31:799–809CrossRef Lamy C, Belgsir EE, Leger J-M (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31:799–809CrossRef
12.
go back to reference Jusys Z, Kaiser J, Behm RJ (2003) Methanol electrooxidation over Pt/C fuel cell catalysts: dependence of product yields on catalyst loading. Langmuir 19:6759–6769CrossRef Jusys Z, Kaiser J, Behm RJ (2003) Methanol electrooxidation over Pt/C fuel cell catalysts: dependence of product yields on catalyst loading. Langmuir 19:6759–6769CrossRef
13.
go back to reference Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108:19413–19424CrossRef Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108:19413–19424CrossRef
14.
go back to reference Shao MH, Adzic RR (2005) Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim Acta 50:2415–2422CrossRef Shao MH, Adzic RR (2005) Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim Acta 50:2415–2422CrossRef
15.
go back to reference Adzic RR, Tripkovic AV, O’Grady WE (1982) Structural effects in electrocatalysis. Nature 296:10–11CrossRef Adzic RR, Tripkovic AV, O’Grady WE (1982) Structural effects in electrocatalysis. Nature 296:10–11CrossRef
16.
go back to reference Xia XH, Iwasita T, Ge F, Vielstich W (1996) Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim Acta 41:711–718CrossRef Xia XH, Iwasita T, Ge F, Vielstich W (1996) Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim Acta 41:711–718CrossRef
17.
go back to reference Xia XH, Liess H-D, Iwasita T (1997) Early stages in the oxidation of ethanol at low-index single crystal platinum electrodes. J Electroanal Chem 437:233–240CrossRef Xia XH, Liess H-D, Iwasita T (1997) Early stages in the oxidation of ethanol at low-index single crystal platinum electrodes. J Electroanal Chem 437:233–240CrossRef
18.
go back to reference Lamy C, Leger J-M, Clavilier J, Parsons R (1983) Structural effects in electrocatalysis: a comparative study of the oxidation of CO, HCOOH, and CH3OH on single crystal Pt electrodes. J Electroanal Chem 150:71–77CrossRef Lamy C, Leger J-M, Clavilier J, Parsons R (1983) Structural effects in electrocatalysis: a comparative study of the oxidation of CO, HCOOH, and CH3OH on single crystal Pt electrodes. J Electroanal Chem 150:71–77CrossRef
19.
go back to reference Morin M-C, Lamy C, Leger J-M, Vasquez J-L, Aldaz A (1990) Structural effects in electrocatalysis: oxidation of ethanol on platinum single crystal electrodes. Effect of pH. J Electroanal Chem 283:287–302CrossRef Morin M-C, Lamy C, Leger J-M, Vasquez J-L, Aldaz A (1990) Structural effects in electrocatalysis: oxidation of ethanol on platinum single crystal electrodes. Effect of pH. J Electroanal Chem 283:287–302CrossRef
20.
go back to reference Chang S-C, Leung L-W H, Weaver MJ (1990) Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 94:6013–6021CrossRef Chang S-C, Leung L-W H, Weaver MJ (1990) Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 94:6013–6021CrossRef
21.
go back to reference Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397CrossRef Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397CrossRef
22.
go back to reference Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46:320–333CrossRef Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46:320–333CrossRef
23.
go back to reference Housmans THM, Koper MTM (2003) Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study. J Phys Chem B 107:8557–8567CrossRef Housmans THM, Koper MTM (2003) Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study. J Phys Chem B 107:8557–8567CrossRef
24.
go back to reference Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416CrossRef Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416CrossRef
25.
go back to reference Tripkovic AV, Popovic KD (1996) Oxidation of methanol on platinum single crystal stepped electrodes from [110] zone in acid solution. Electrochim Acta 41(15):2385–2394CrossRef Tripkovic AV, Popovic KD (1996) Oxidation of methanol on platinum single crystal stepped electrodes from [110] zone in acid solution. Electrochim Acta 41(15):2385–2394CrossRef
26.
go back to reference Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11:9114–9123CrossRef Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11:9114–9123CrossRef
27.
go back to reference Shin J, Tornquist WJ, Korzeniewski C, Hoaglund CS (1996) Elementary steps in the oxidation and dissociative chemisorptions of ethanol on smooth and stepped surface planes of platinum electrodes. Surf Sci 364:122–130CrossRef Shin J, Tornquist WJ, Korzeniewski C, Hoaglund CS (1996) Elementary steps in the oxidation and dissociative chemisorptions of ethanol on smooth and stepped surface planes of platinum electrodes. Surf Sci 364:122–130CrossRef
28.
go back to reference Tarnowski DJ, Korzeniewski C (1997) Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid. J Phys Chem B 101:253–258CrossRef Tarnowski DJ, Korzeniewski C (1997) Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid. J Phys Chem B 101:253–258CrossRef
29.
go back to reference Park S, Xie Y, Weaver MJ (2002) Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 18(15):5792–5798CrossRef Park S, Xie Y, Weaver MJ (2002) Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 18(15):5792–5798CrossRef
30.
go back to reference Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829CrossRef Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829CrossRef
31.
go back to reference Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232CrossRef Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232CrossRef
32.
go back to reference Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRef Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRef
33.
go back to reference Zhou ZY, Huang Z-Z, Chen D-J, Wang Q, Tian N, Sun S-G (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49(2):411–414CrossRef Zhou ZY, Huang Z-Z, Chen D-J, Wang Q, Tian N, Sun S-G (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49(2):411–414CrossRef
34.
go back to reference Zhou W-P, Li M, Koenigsmann C, Ma C, Wong SS, Adzic RR (2011) Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: nanowires versus nanoparticles. Electrochim Acta 56(27):9824–9830CrossRef Zhou W-P, Li M, Koenigsmann C, Ma C, Wong SS, Adzic RR (2011) Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: nanowires versus nanoparticles. Electrochim Acta 56(27):9824–9830CrossRef
35.
go back to reference Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155(2):95–110CrossRef Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155(2):95–110CrossRef
36.
go back to reference Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef
37.
go back to reference Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part II Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273CrossRef Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part II Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273CrossRef
38.
go back to reference Van Veen JAR, Frelink T, Visscher W (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef Van Veen JAR, Frelink T, Visscher W (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef
39.
go back to reference Del Colle V, Berna A, Tremiliosi-Filho G, Herrero E, Feliu JM (2008) Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. Phys Chem Chem Phys 10:3766–3773CrossRef Del Colle V, Berna A, Tremiliosi-Filho G, Herrero E, Feliu JM (2008) Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. Phys Chem Chem Phys 10:3766–3773CrossRef
40.
go back to reference Souza-Garcia J, Herrero E, Feliu JM (2010) Breaking the C–C bond in the ethanol oxidation reaction on platinum electrodes: effect of steps and ruthenium adatoms. ChemPhysChem 11:1391–1394CrossRef Souza-Garcia J, Herrero E, Feliu JM (2010) Breaking the C–C bond in the ethanol oxidation reaction on platinum electrodes: effect of steps and ruthenium adatoms. ChemPhysChem 11:1391–1394CrossRef
41.
go back to reference Wang H, Baltruschat H (2007) DEMS study on methanol oxidation at poly- and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, Ru adatom, and potential. J Phys Chem C 111(19):7038–7048CrossRef Wang H, Baltruschat H (2007) DEMS study on methanol oxidation at poly- and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, Ru adatom, and potential. J Phys Chem C 111(19):7038–7048CrossRef
42.
go back to reference Campbell SA, Parsons R (1992) Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well defined platinum surfaces. J Chem Soc Faraday Trans 88:833–841CrossRef Campbell SA, Parsons R (1992) Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well defined platinum surfaces. J Chem Soc Faraday Trans 88:833–841CrossRef
43.
go back to reference Janssen MMP, Moolhuysen J (1976) Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochim Acta 21(11):869–878CrossRef Janssen MMP, Moolhuysen J (1976) Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochim Acta 21(11):869–878CrossRef
44.
go back to reference Kokkinidis G (1986) Underpotential deposition and electrocatalysis. J Electroanal Chem Interfacial Electrochem 201(2):217–236CrossRef Kokkinidis G (1986) Underpotential deposition and electrocatalysis. J Electroanal Chem Interfacial Electrochem 201(2):217–236CrossRef
45.
go back to reference Bittins-Cattaneo B, Iwasita T (1987) Electrocatalysis of methanol oxidation by adsorbed tin on platinum. J Electroanal Chem Interfacial Electrochem 238(1–2):151–161 Bittins-Cattaneo B, Iwasita T (1987) Electrocatalysis of methanol oxidation by adsorbed tin on platinum. J Electroanal Chem Interfacial Electrochem 238(1–2):151–161
46.
go back to reference Iwasita T, Hoster H, John-Anacker A, Lin WF, Vielstich W (2000) Methanol oxidation on PtRu electrodes: influence of surface structure and Pt − Ru atom distribution. Langmuir 16(2):522–529CrossRef Iwasita T, Hoster H, John-Anacker A, Lin WF, Vielstich W (2000) Methanol oxidation on PtRu electrodes: influence of surface structure and Pt − Ru atom distribution. Langmuir 16(2):522–529CrossRef
47.
go back to reference Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Pt–Ru model catalysts for anodic methanol oxidation: influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337–346CrossRef Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Pt–Ru model catalysts for anodic methanol oxidation: influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337–346CrossRef
48.
go back to reference Camara GA, Lima RBD, Iwasita T (2004) Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition. Electrochem Commun 6(8):812–815CrossRef Camara GA, Lima RBD, Iwasita T (2004) Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition. Electrochem Commun 6(8):812–815CrossRef
49.
go back to reference Tsai M-C, Yeh T-K, Tsai C-H (2006) An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem Commun 8(9):1445–1452CrossRef Tsai M-C, Yeh T-K, Tsai C-H (2006) An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem Commun 8(9):1445–1452CrossRef
50.
go back to reference Radmilovic V, Gasteiger HA, Ross PN (1995) Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation. J Catal 154(1):98–106CrossRef Radmilovic V, Gasteiger HA, Ross PN (1995) Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation. J Catal 154(1):98–106CrossRef
51.
go back to reference Yang B, Lu Q, Wang Y, Zhang L, Lu J, Liu P (2003) Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem Mater 15:3552–3557CrossRef Yang B, Lu Q, Wang Y, Zhang L, Lu J, Liu P (2003) Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem Mater 15:3552–3557CrossRef
52.
go back to reference Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763CrossRef Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763CrossRef
53.
go back to reference Bonnemann H, Brinkmann R, Kinge S, Ely TO, Armand M (2004) Chloride free Pt- and PtRu-nanoparticles stabilised by “Armand’s ligand” as precursors for fuel cell catalysts. Fuel Cells 4:289–296CrossRef Bonnemann H, Brinkmann R, Kinge S, Ely TO, Armand M (2004) Chloride free Pt- and PtRu-nanoparticles stabilised by “Armand’s ligand” as precursors for fuel cell catalysts. Fuel Cells 4:289–296CrossRef
54.
go back to reference Park KC, Jang IY, Wongwiriyapan W, Morimoto S, Kim YJ, Jung YC, Toya T, Endo M (2010) Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. J Mater Chem 20:5345–5354CrossRef Park KC, Jang IY, Wongwiriyapan W, Morimoto S, Kim YJ, Jung YC, Toya T, Endo M (2010) Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. J Mater Chem 20:5345–5354CrossRef
55.
go back to reference Liu Y, Qiu X, Chen Z, Zhu W (2002) A new supported catalyst for methanol oxidation prepared by a reverse micelles method. Electrochem Commun 4:550–553CrossRef Liu Y, Qiu X, Chen Z, Zhu W (2002) A new supported catalyst for methanol oxidation prepared by a reverse micelles method. Electrochem Commun 4:550–553CrossRef
56.
go back to reference Solla-Gullon J, Vidal-Iglesias FJ, Montiel V, Aldaz A (2004) Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water-in-oil microemulsion. Electrochim Acta 49:5079–5088CrossRef Solla-Gullon J, Vidal-Iglesias FJ, Montiel V, Aldaz A (2004) Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water-in-oil microemulsion. Electrochim Acta 49:5079–5088CrossRef
57.
go back to reference Xiong L, Manthiram A (2005) Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ionics 176:385–392CrossRef Xiong L, Manthiram A (2005) Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ionics 176:385–392CrossRef
58.
go back to reference Dinh HN, Ren X, Garzon FH, Zelenay P, Gottesfeld S (2000) Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 491:222–233CrossRef Dinh HN, Ren X, Garzon FH, Zelenay P, Gottesfeld S (2000) Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 491:222–233CrossRef
59.
go back to reference Dubau L, Coutanceau C, Garnier E, Leger J-M, Lamy C (2003) Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: atomic composition and temperature effects. J Appl Electrochem 33:419–429CrossRef Dubau L, Coutanceau C, Garnier E, Leger J-M, Lamy C (2003) Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: atomic composition and temperature effects. J Appl Electrochem 33:419–429CrossRef
60.
go back to reference Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt − Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15(3):774–779CrossRef Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt − Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15(3):774–779CrossRef
61.
go back to reference Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, Reddington E, Sapienza A, Chan BC, Mallouk TE, Sarangapani S (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102:9997–10003CrossRef Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, Reddington E, Sapienza A, Chan BC, Mallouk TE, Sarangapani S (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102:9997–10003CrossRef
62.
go back to reference Morimoto Y, Yeager EB (1998) Comparison of methanol oxidations on Pt, PtRu and PtSn electrodes. J Electroanal Chem 444:95–100CrossRef Morimoto Y, Yeager EB (1998) Comparison of methanol oxidations on Pt, PtRu and PtSn electrodes. J Electroanal Chem 444:95–100CrossRef
63.
go back to reference Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) How to make electrocatalysts more active for direct methanol oxidation—avoid PtRu bimetallic alloys! J Phys Chem B 104:9772–9776CrossRef Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) How to make electrocatalysts more active for direct methanol oxidation—avoid PtRu bimetallic alloys! J Phys Chem B 104:9772–9776CrossRef
64.
go back to reference Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X (2006) Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed 45:5315–5319CrossRef Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X (2006) Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed 45:5315–5319CrossRef
65.
go back to reference Suffredinia HB, Tricolib V, Avacaa LA, Vatistasb N (2004) Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochem Commun 6(10):1025–1028CrossRef Suffredinia HB, Tricolib V, Avacaa LA, Vatistasb N (2004) Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochem Commun 6(10):1025–1028CrossRef
66.
go back to reference Chrzanowski W, Wieckowski A (1997) Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13:5974–5978CrossRef Chrzanowski W, Wieckowski A (1997) Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13:5974–5978CrossRef
67.
go back to reference Suffredini HB, Tricoli V, Vatistas N, Avaca LA (2006) Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol–gel technique and supported on boron-doped diamond. J Power Sources 158(1):124–128CrossRef Suffredini HB, Tricoli V, Vatistas N, Avaca LA (2006) Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol–gel technique and supported on boron-doped diamond. J Power Sources 158(1):124–128CrossRef
68.
go back to reference Jiang L, Colmenaresa L, Jusysa Z, Sunb GQ, Behma RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377–389CrossRef Jiang L, Colmenaresa L, Jusysa Z, Sunb GQ, Behma RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377–389CrossRef
69.
go back to reference Zhou WP, Axnanda S, White MG, Adzic RR, Hrbek J (2011) Enhancement in ethanol electrooxidation by SnOx nanoislands grown on Pt(111): effect of metal oxide-metal interface sites. J Phys Chem C 115:16467–16473CrossRef Zhou WP, Axnanda S, White MG, Adzic RR, Hrbek J (2011) Enhancement in ethanol electrooxidation by SnOx nanoislands grown on Pt(111): effect of metal oxide-metal interface sites. J Phys Chem C 115:16467–16473CrossRef
70.
go back to reference Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Va´zquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD (2003) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049CrossRef Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Va´zquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD (2003) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049CrossRef
71.
go back to reference Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1):L547–555CrossRef Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1):L547–555CrossRef
72.
go back to reference Guo S, Fang Y, Dong S, Wang E (2007) High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J Phys Chem C 111(45):17104–17109CrossRef Guo S, Fang Y, Dong S, Wang E (2007) High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J Phys Chem C 111(45):17104–17109CrossRef
73.
go back to reference Wang H, Xu C, Cheng F, Zhang M, Wang S, Jiang SP (2008) Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem Commun 10(10):1575–1578CrossRef Wang H, Xu C, Cheng F, Zhang M, Wang S, Jiang SP (2008) Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem Commun 10(10):1575–1578CrossRef
74.
go back to reference Zeng J, Yang J, Lee JY, Zhou W (2006) Preparation of carbon-supported core-shell Au–Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110:24606–24611CrossRef Zeng J, Yang J, Lee JY, Zhou W (2006) Preparation of carbon-supported core-shell Au–Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110:24606–24611CrossRef
75.
go back to reference Chrzanowski W, Kim H, Wieckowski A (1998) Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes. Catal Lett 50:69–75CrossRef Chrzanowski W, Kim H, Wieckowski A (1998) Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes. Catal Lett 50:69–75CrossRef
76.
go back to reference Chen CH, Sarma LS, Wang DY, Lai FJ, Al Andra CC, Chang SH, Liu DG, Chen CC, Lee JF, Hwang BJ (2010) Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation. ChemCatChem 2:159–166CrossRef Chen CH, Sarma LS, Wang DY, Lai FJ, Al Andra CC, Chang SH, Liu DG, Chen CC, Lee JF, Hwang BJ (2010) Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation. ChemCatChem 2:159–166CrossRef
77.
go back to reference Sasaki K, Adzic RR (2008) Monolayer-level Ru- and NbO2-supported platinum electrocatalysts for methanol oxidation. J Electrochem Soc 105:B180–B186CrossRef Sasaki K, Adzic RR (2008) Monolayer-level Ru- and NbO2-supported platinum electrocatalysts for methanol oxidation. J Electrochem Soc 105:B180–B186CrossRef
78.
go back to reference Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3):781–787CrossRef Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3):781–787CrossRef
79.
go back to reference Fujiwara N, Friedrich KA, Stimming U (1999) Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem 472(2):120–125CrossRef Fujiwara N, Friedrich KA, Stimming U (1999) Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem 472(2):120–125CrossRef
80.
go back to reference Tanaka S, Umeda M, Ojima H, Usui Y, Kimura O, Uchida I (2005) Preparation and evaluation of a multi-component catalyst by using a co-sputtering system for anodic oxidation of ethanol. J Power Sources 152:34–39CrossRef Tanaka S, Umeda M, Ojima H, Usui Y, Kimura O, Uchida I (2005) Preparation and evaluation of a multi-component catalyst by using a co-sputtering system for anodic oxidation of ethanol. J Power Sources 152:34–39CrossRef
81.
go back to reference Wang Z, Yin G, Zhang J, Sun Y, Shi P (2006) Co-catalytic effect of Ni in the methanol electro-oxidation on Pt–Ru/C catalyst for direct methanol fuel cell. Electrochim Acta 51: 5691–5697CrossRef Wang Z, Yin G, Zhang J, Sun Y, Shi P (2006) Co-catalytic effect of Ni in the methanol electro-oxidation on Pt–Ru/C catalyst for direct methanol fuel cell. Electrochim Acta 51: 5691–5697CrossRef
82.
go back to reference Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim HS, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877CrossRef Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim HS, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877CrossRef
83.
go back to reference Oliveira Neto A, Franco EG, Arico E, Linardi M, Gonzalez ER (2003) Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bönnemann’s method. J Eur Ceram Soc 23:2987–2992CrossRef Oliveira Neto A, Franco EG, Arico E, Linardi M, Gonzalez ER (2003) Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bönnemann’s method. J Eur Ceram Soc 23:2987–2992CrossRef
84.
go back to reference Li G, Pickup PG (2006) The promoting effect of Pb on carbon supported Pt and Pt/Ru catalysts for electro-oxidation of ethanol. Electrochim Acta 52:1033–1037CrossRef Li G, Pickup PG (2006) The promoting effect of Pb on carbon supported Pt and Pt/Ru catalysts for electro-oxidation of ethanol. Electrochim Acta 52:1033–1037CrossRef
85.
go back to reference Calegaro ML, Suffredini HB, Machado SAS, Avaca LA (2006) Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol–gel method. J Power Sources 156:300–305CrossRef Calegaro ML, Suffredini HB, Machado SAS, Avaca LA (2006) Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol–gel method. J Power Sources 156:300–305CrossRef
86.
go back to reference Stamenkovic VR, Arenz M, Lucas CA, Gallagher ME, Ross PN, Markovic NM (2003) Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J Am Chem Soc 125:2735–2745CrossRef Stamenkovic VR, Arenz M, Lucas CA, Gallagher ME, Ross PN, Markovic NM (2003) Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J Am Chem Soc 125:2735–2745CrossRef
87.
go back to reference Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus alloy surfaces. Electrochim Acta 41:2587–2593CrossRef Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus alloy surfaces. Electrochim Acta 41:2587–2593CrossRef
88.
go back to reference MacDonald JP, Gualtieri B, Runga N, Teliz E, Zinola CF (2008) Modification of platinum surfaces by spontaneous deposition: methanol oxidation electrocatalysis. Int J Hydrogen Energ 33:7048–7061CrossRef MacDonald JP, Gualtieri B, Runga N, Teliz E, Zinola CF (2008) Modification of platinum surfaces by spontaneous deposition: methanol oxidation electrocatalysis. Int J Hydrogen Energ 33:7048–7061CrossRef
89.
go back to reference Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula M, Tsiakaras P (2004) Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 126:16–22CrossRef Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula M, Tsiakaras P (2004) Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 126:16–22CrossRef
90.
go back to reference Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: in situ FTIR spectroscopy and on-line DEMS studies. Phys Chem Chem Phys 9:2686–2696CrossRef Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: in situ FTIR spectroscopy and on-line DEMS studies. Phys Chem Chem Phys 9:2686–2696CrossRef
91.
go back to reference Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98–103CrossRef Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98–103CrossRef
92.
go back to reference Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Tsiakaras P, Xin Q, Leonditis V, Kontou S, Tsiakaras P (2005) Direct ethanol PEM fuel cells: the case of platinum based anodes. Int J Hydrogen Energ 30:995–1001CrossRef Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Tsiakaras P, Xin Q, Leonditis V, Kontou S, Tsiakaras P (2005) Direct ethanol PEM fuel cells: the case of platinum based anodes. Int J Hydrogen Energ 30:995–1001CrossRef
93.
go back to reference Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50: 5384–5389CrossRef Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50: 5384–5389CrossRef
94.
go back to reference Bonneman H, Britz P, Vogel W (1998) Structure and chemical composition of a surfactant stabilized Pt3Sn alloy colloid. Langmuir 14:6654–6657CrossRef Bonneman H, Britz P, Vogel W (1998) Structure and chemical composition of a surfactant stabilized Pt3Sn alloy colloid. Langmuir 14:6654–6657CrossRef
95.
go back to reference Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRef Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRef
96.
go back to reference Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131(1–2):217–223CrossRef Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131(1–2):217–223CrossRef
97.
go back to reference Antolini E, Colmatia F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Commun 9:398–404CrossRef Antolini E, Colmatia F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Commun 9:398–404CrossRef
98.
go back to reference Sine G, Smida D, Limat M, Foti G, Comninellis C (2007) Microemulsion synthesized Pt/Ru/Sn nanoparticles on BDD for alcohol electro-oxidation. J Electrochem Soc 154:B170–B174CrossRef Sine G, Smida D, Limat M, Foti G, Comninellis C (2007) Microemulsion synthesized Pt/Ru/Sn nanoparticles on BDD for alcohol electro-oxidation. J Electrochem Soc 154:B170–B174CrossRef
99.
go back to reference Neto AO, Dias RR, Tusi MM, Linardi M, Spinace EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91CrossRef Neto AO, Dias RR, Tusi MM, Linardi M, Spinace EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91CrossRef
100.
go back to reference Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52(24):6997–7006CrossRef Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52(24):6997–7006CrossRef
101.
go back to reference Koenigsmann C, Wong SS (2011) One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci 4:1161–1176CrossRef Koenigsmann C, Wong SS (2011) One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci 4:1161–1176CrossRef
102.
go back to reference Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262CrossRef Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262CrossRef
103.
go back to reference Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 503:99–104CrossRef Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 503:99–104CrossRef
104.
go back to reference Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid-State Lett 4:A217–A220CrossRef Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid-State Lett 4:A217–A220CrossRef
105.
go back to reference Brankovic SR, Marinkovic NS, Wang JX, Adzic RR (2002) Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes. J Electroanal Chem 532:57–66CrossRef Brankovic SR, Marinkovic NS, Wang JX, Adzic RR (2002) Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes. J Electroanal Chem 532:57–66CrossRef
106.
go back to reference Brankovic SR, Wang JX, Adzic RR (2001) New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level. J Serb Chem Soc 66(11–12): 887–898 Brankovic SR, Wang JX, Adzic RR (2001) New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level. J Serb Chem Soc 66(11–12): 887–898
107.
go back to reference Wang JX, Brankovic SR, Zhu Y, Hanson JC, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150:A1108–A1117CrossRef Wang JX, Brankovic SR, Zhu Y, Hanson JC, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150:A1108–A1117CrossRef
108.
go back to reference Li M, Liu P, Adzic RR (2012) Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J Phys Chem Lett 3:3480–3485CrossRef Li M, Liu P, Adzic RR (2012) Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J Phys Chem Lett 3:3480–3485CrossRef
109.
go back to reference Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nature Mater 8:325–330CrossRef Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nature Mater 8:325–330CrossRef
110.
go back to reference Li M, Kowal A, Sasaki K, Marinkovic NS, Su D, Korach E, Liu P, Adzic RR (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim Acta 55:4331–4338CrossRef Li M, Kowal A, Sasaki K, Marinkovic NS, Su D, Korach E, Liu P, Adzic RR (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim Acta 55:4331–4338CrossRef
111.
go back to reference Li M, Marinkovic NS, Sasaki K (2012) In situ characterization of ternary Pt–Rh–SnO2/C catalysts for ethanol electrooxidation. Electrocatal 3:376–385 Li M, Marinkovic NS, Sasaki K (2012) In situ characterization of ternary Pt–Rh–SnO2/C catalysts for ethanol electrooxidation. Electrocatal 3:376–385
112.
go back to reference Li M, Cullen D, Sasaki K, Marinkovic NS, More K, Adzic RR (2013) Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C-C bond. J Am Chem Soc 135:132–141CrossRef Li M, Cullen D, Sasaki K, Marinkovic NS, More K, Adzic RR (2013) Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C-C bond. J Am Chem Soc 135:132–141CrossRef
113.
go back to reference Kowal A, Gojković SL, Leed KS, Olszewski P, Sung Y-E (2009) Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 nanoclusters. Electrochem Commun 11(4):724–727CrossRef Kowal A, Gojković SL, Leed KS, Olszewski P, Sung Y-E (2009) Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 nanoclusters. Electrochem Commun 11(4):724–727CrossRef
114.
go back to reference Du W, Wang Q, LaScala CA, Zhang L, Su D, Frenkel AI, Mathura VK, Teng X (2011) Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. J Mater Chem 21:8887–8892CrossRef Du W, Wang Q, LaScala CA, Zhang L, Su D, Frenkel AI, Mathura VK, Teng X (2011) Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. J Mater Chem 21:8887–8892CrossRef
115.
go back to reference Colmati F, Antolini E, Gonzalez ER (2008) Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt–Sn–Rh catalysts. J Alloy Compd 456:264–270CrossRef Colmati F, Antolini E, Gonzalez ER (2008) Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt–Sn–Rh catalysts. J Alloy Compd 456:264–270CrossRef
116.
go back to reference de Tacconi NR, Lezna RO, Beden B, Hahn F, Lamy C (1994) In-situ FTIR study of the electrocatalytic oxidation of ethanol at iridium and rhodium electrodes. J Electroanal Chem 379:329–337CrossRef de Tacconi NR, Lezna RO, Beden B, Hahn F, Lamy C (1994) In-situ FTIR study of the electrocatalytic oxidation of ethanol at iridium and rhodium electrodes. J Electroanal Chem 379:329–337CrossRef
117.
go back to reference Cao L, Sun G, Li H, Xin Q (2007) Carbon-supported IrSn catalysts for a direct ethanol fuel cell. Electrochem Commun 9:2541–2546CrossRef Cao L, Sun G, Li H, Xin Q (2007) Carbon-supported IrSn catalysts for a direct ethanol fuel cell. Electrochem Commun 9:2541–2546CrossRef
118.
go back to reference Choi Y, Liu P (2011) Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catal Today 165:64–70CrossRef Choi Y, Liu P (2011) Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catal Today 165:64–70CrossRef
119.
go back to reference Wang JX, Inada H, Wu L, Zhu Y, Choi Y-M, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef Wang JX, Inada H, Wu L, Zhu Y, Choi Y-M, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef
120.
go back to reference Cai Y, Ma C, Zhu Y, Wang JX, Adzic RR (2011) Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. Langmuir 27:8540–8547CrossRef Cai Y, Ma C, Zhu Y, Wang JX, Adzic RR (2011) Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. Langmuir 27:8540–8547CrossRef
Metadata
Title
Low-Platinum-Content Electrocatalysts for Methanol and Ethanol Electrooxidation
Authors
Meng Li
Radoslav R. Adzic
Copyright Year
2013
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4911-8_1