Skip to main content
Top

2015 | OriginalPaper | Chapter

Low Power Programmable Gain Analog to Digital Converter for Integrated Neural Implant Front End

Authors : Amir Zjajo, Carlo Galuzzi, Rene van Leuken

Published in: Biomedical Engineering Systems and Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Integrated neural implants interface with the brain using biocompatible electrodes to provide high yield cell recordings, large channel counts and access to spike data and/or field potentials with high signal-to-noise ratio. By increasing the number of recording electrodes, spatially broad analysis can be performed that can provide insights on how and why neuronal ensembles synchronize their activity. However, the maximum number of channels is constrained by noise, area, bandwidth, power, thermal dissipation and the scalability and expandability of the recording system. In this chapter, we characterize the noise fluctuations on a circuit-architecture level for efficient hardware implementation of programmable gain analog to digital converter for neural signal-processing. This approach provides key insight required to address signal-to-noise ratio, response time, and linearity of the physical electronic interface. The proposed methodology is evaluated on a prototype converter designed in standard single poly, six metal 90-nm CMOS process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Frey, U., et al.: An 11 k-electrode 126-channel high-density micro-electrode array to interact with electrogenic cells. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 158–159 (2007) Frey, U., et al.: An 11 k-electrode 126-channel high-density micro-electrode array to interact with electrogenic cells. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 158–159 (2007)
3.
go back to reference Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986)CrossRef Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986)CrossRef
4.
go back to reference Chae, C., et al.: A 128-channel 6 mw wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)CrossRef Chae, C., et al.: A 128-channel 6 mw wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)CrossRef
5.
go back to reference Yin, M., Ghovanloo, M.: A low-noise preamplifier with adjustable gain and bandwidth for bio potential recording applications. In: IEEE International Symposium on Circuits and Systems, pp. 321–324 (2007) Yin, M., Ghovanloo, M.: A low-noise preamplifier with adjustable gain and bandwidth for bio potential recording applications. In: IEEE International Symposium on Circuits and Systems, pp. 321–324 (2007)
6.
go back to reference Shahrokhi, F., et al.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRef Shahrokhi, F., et al.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRef
7.
go back to reference Gao, H., et al.: HermesE: a 96-channel full data rate direct neural interface in 0.13um CMOS. IEEE J. Solid-State Circuits 47(4), 1043–1055 (2012)CrossRef Gao, H., et al.: HermesE: a 96-channel full data rate direct neural interface in 0.13um CMOS. IEEE J. Solid-State Circuits 47(4), 1043–1055 (2012)CrossRef
8.
go back to reference Han, D., et al.: A 0.45 V 100-channel neural-recording IC with sub-μW/channel comsumption in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 7(6), 735–746 (2013)CrossRef Han, D., et al.: A 0.45 V 100-channel neural-recording IC with sub-μW/channel comsumption in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 7(6), 735–746 (2013)CrossRef
9.
go back to reference Chae, M.S., Liu, W., Sivaprakasham, M.: Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 43(9), 1931–1939 (2008)CrossRef Chae, M.S., Liu, W., Sivaprakasham, M.: Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 43(9), 1931–1939 (2008)CrossRef
10.
go back to reference Seese, T.M., Harasaki, H., Saidel, G.M., Davies, C.R.: Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab. Invest. 78(12), 1553–1562 (1998) Seese, T.M., Harasaki, H., Saidel, G.M., Davies, C.R.: Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab. Invest. 78(12), 1553–1562 (1998)
11.
go back to reference de Zeeuw, C.I., et al.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12(6), 327–344 (2011)CrossRef de Zeeuw, C.I., et al.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12(6), 327–344 (2011)CrossRef
12.
go back to reference Kölbl, F., et al.: In vivo electrical characterization of deep brain electrode and impact on bio-amplifier design. In: Proceedings of IEEE Biomedical circuits and Systems Conference, pp. 210–213 (2010) Kölbl, F., et al.: In vivo electrical characterization of deep brain electrode and impact on bio-amplifier design. In: Proceedings of IEEE Biomedical circuits and Systems Conference, pp. 210–213 (2010)
13.
go back to reference West, A.C., Newman, J.: Current distributions on recessed electrodes. J. Electrochem. Soc. 138(6), 1620–1625 (1991)CrossRef West, A.C., Newman, J.: Current distributions on recessed electrodes. J. Electrochem. Soc. 138(6), 1620–1625 (1991)CrossRef
14.
go back to reference Harpe, P., Cantatore, E., van Roermund, A.: A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-Step. IEEE J. Solid-State Circuits 48(12), 3011–3018 (2013)CrossRef Harpe, P., Cantatore, E., van Roermund, A.: A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-Step. IEEE J. Solid-State Circuits 48(12), 3011–3018 (2013)CrossRef
15.
go back to reference Rodríguez-Pérez, L., et al.: A 64-channel inductively-powered neural recording sensor array. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 228–231 (2012) Rodríguez-Pérez, L., et al.: A 64-channel inductively-powered neural recording sensor array. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 228–231 (2012)
16.
go back to reference Harrison, R., et al.: A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 42(1), 123–133 (2007)CrossRef Harrison, R., et al.: A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 42(1), 123–133 (2007)CrossRef
17.
go back to reference Harrison, R.: The design of integrated circuits to observe brain activity. Proc. IEEE 96(7), 1203–1216 (2008)CrossRef Harrison, R.: The design of integrated circuits to observe brain activity. Proc. IEEE 96(7), 1203–1216 (2008)CrossRef
18.
go back to reference Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRef Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRef
19.
go back to reference Fox, R.F., Lu, Y.-N.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E. 49, 3421–3431 (1994)CrossRef Fox, R.F., Lu, Y.-N.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E. 49, 3421–3431 (1994)CrossRef
20.
go back to reference Gray, P.R., Meyer, R.G.: Analysis and Design of Analog Integrated Circuits. Wiley, New York (1984) Gray, P.R., Meyer, R.G.: Analysis and Design of Analog Integrated Circuits. Wiley, New York (1984)
21.
go back to reference Demir, E., Liu, A., Sangiovanni-Vincentelli, A.: Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations. In: Proceedings of IEEE International Conference on Computer Aided Design, pp. 598–603 (1994) Demir, E., Liu, A., Sangiovanni-Vincentelli, A.: Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations. In: Proceedings of IEEE International Conference on Computer Aided Design, pp. 598–603 (1994)
22.
go back to reference Yang, Z., Zhao, Q., Keefer, E., Liu, W.: Noise characterization, modeling, and reduction for in vivo neural recording. Advances in Neural Information Processing Systems, pp. 2160–2168 (2010) Yang, Z., Zhao, Q., Keefer, E., Liu, W.: Noise characterization, modeling, and reduction for in vivo neural recording. Advances in Neural Information Processing Systems, pp. 2160–2168 (2010)
23.
go back to reference Fischer, J.H.: Noise sources and calculation techniques for switched capacitor filters. IEEE J. Solid-State Circuits 17(4), 742–752 (1982)CrossRef Fischer, J.H.: Noise sources and calculation techniques for switched capacitor filters. IEEE J. Solid-State Circuits 17(4), 742–752 (1982)CrossRef
24.
go back to reference Sepke, T., Holloway, P., Sodini, C.G., Lee, H.-S.: Noise analysis for comparator-based circuits. IEEE Trans. Circuits Syst.-I 56(3), 541–553 (2009)MathSciNetCrossRef Sepke, T., Holloway, P., Sodini, C.G., Lee, H.-S.: Noise analysis for comparator-based circuits. IEEE Trans. Circuits Syst.-I 56(3), 541–553 (2009)MathSciNetCrossRef
25.
go back to reference Enz, C., Cheng, Y.: MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35(2), 186–201 (2000)CrossRef Enz, C., Cheng, Y.: MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35(2), 186–201 (2000)CrossRef
26.
go back to reference Jindal, R.P.: Compact noise models for MOSFETs. IEEE Trans. Electron Devices 53(9), 2051–2061 (2006)CrossRef Jindal, R.P.: Compact noise models for MOSFETs. IEEE Trans. Electron Devices 53(9), 2051–2061 (2006)CrossRef
27.
go back to reference Ou, J.: gm/ID based noise analysis for CMOS analog circuits. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems, pp. 1–4 (2011) Ou, J.: gm/ID based noise analysis for CMOS analog circuits. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems, pp. 1–4 (2011)
28.
go back to reference Song, S., et al.: A 430nW 64nV/VHz current-reuse telescopic amplifier for neural recording application. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 322–325 (2013) Song, S., et al.: A 430nW 64nV/VHz current-reuse telescopic amplifier for neural recording application. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 322–325 (2013)
29.
go back to reference Zou, X., et al.: A 100-channel 1-mW implantable neural recording IC. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2584–2596 (2013)CrossRef Zou, X., et al.: A 100-channel 1-mW implantable neural recording IC. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2584–2596 (2013)CrossRef
30.
go back to reference Lee, J., Rhew, H.-G., Kipke, D.R., Flynn, M.P.: A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45(9), 1935–1945 (2010)CrossRef Lee, J., Rhew, H.-G., Kipke, D.R., Flynn, M.P.: A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid-State Circuits 45(9), 1935–1945 (2010)CrossRef
31.
go back to reference Abdelhalim, K., Genov, R.: CMOS DAC-sharing stimulator for neural recording and stimulation arrays. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1712–1715 (2011) Abdelhalim, K., Genov, R.: CMOS DAC-sharing stimulator for neural recording and stimulation arrays. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1712–1715 (2011)
32.
go back to reference Bult, K., Geelen, G.: A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J. Solid-State Circuits 25(6), 1379–1384 (1990)CrossRef Bult, K., Geelen, G.: A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J. Solid-State Circuits 25(6), 1379–1384 (1990)CrossRef
33.
go back to reference Kobayashi, T., Nogami, K., Shirotori, T., Fujimoto, Y.: A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)CrossRef Kobayashi, T., Nogami, K., Shirotori, T., Fujimoto, Y.: A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)CrossRef
Metadata
Title
Low Power Programmable Gain Analog to Digital Converter for Integrated Neural Implant Front End
Authors
Amir Zjajo
Carlo Galuzzi
Rene van Leuken
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-27707-3_2

Premium Partner