Skip to main content
Top
Published in: Topics in Catalysis 11/2013

01-08-2013

Low Temperature Catalytic Decomposition of Hydrogen Sulfide into Hydrogen and Diatomic Gaseous Sulfur

Authors: A. N. Startsev, O. V. Kruglyakova, Yu. A. Chesalov, S. Ph. Ruzankin, E. A. Kravtsov, T. V. Larina, E. A. Paukshtis

Published in: Topics in Catalysis | Issue 11/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new catalytic reaction of hydrogen sulfide decomposition is discovered, the reaction occurs on metal catalysts in gas phase according to equation
$$2{\text{H}}_{2} {\text{S}} \leftrightarrow 2{\text{H}}_{2} + {\text{S}}_{2}^{{({\text{gas}})}}$$
to produce hydrogen and gaseous diatomic sulfur, conversion of hydrogen sulfide at room temperature is close to 15 %. The thermodynamic driving force of the reaction is the formation of the chemical sulfur–sulfur bond between two hydrogen sulfide molecules adsorbed on two adjacent metal atoms in the key surface intermediate and elimination of hydrogen into gas phase. “Fingerprints” of diatomic sulfur adsorbed on the solid surfaces and dissolved in different solvents are studied. In closed vessels in adsorbed or dissolved states, this molecule is stable for a long period of time (weeks). A possible electronic structure of diatomic gaseous sulfur in the singlet state is considered. According to DFT/CASSCF calculations, energy of the singlet state of S2 molecule is over the triplet ground state energy for 10.4/14.4 kcal/mol. Some properties of gaseous diatomic sulfur are also investigated. Catalytic solid systems, both bulk and supported on porous carriers, are developed. When hydrogen sulfide is passing through the solid catalyst immersed in liquid solvent which is capable of dissolving sulfur generated, conversion of hydrogen sulfide at room temperature achieves 100 %, producing hydrogen in gas phase. This gives grounds to consider hydrogen sulfide as inexhaustible potential source of hydrogen—a very valuable chemical reagent and environmentally friendly energy product.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Authors are grateful to S.N. Truchan and O.N. Martyanov for EPR spectra recording.
 
Literature
1.
go back to reference Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28(3):267–284CrossRef Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28(3):267–284CrossRef
2.
go back to reference Midilli A, Ay M, Dincer I, Rosen MA (2005) On hydrogen and hydrogen energy strategies. I. current status and needs. Renew Sustain Energy Rev 9(3):255–271CrossRef Midilli A, Ay M, Dincer I, Rosen MA (2005) On hydrogen and hydrogen energy strategies. I. current status and needs. Renew Sustain Energy Rev 9(3):255–271CrossRef
3.
go back to reference Ohta T (2006) Some thoughts about the hydrogen civilization and the culture development. Int J Hydrogen Energy 31(2):161–166CrossRef Ohta T (2006) Some thoughts about the hydrogen civilization and the culture development. Int J Hydrogen Energy 31(2):161–166CrossRef
4.
go back to reference Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future—a new conception of the IAHE. Int J Hydrogen Energy 31(2):153–159CrossRef Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future—a new conception of the IAHE. Int J Hydrogen Energy 31(2):153–159CrossRef
5.
go back to reference James OO, Maity S, Mesubi MA, Ogunniran KO, Siyanbola TO, Sahu S, Chaubey R (2011) Towards reforming technologies for production of hydrogen exclusively from renewable resources. Green Chem 13:2272CrossRef James OO, Maity S, Mesubi MA, Ogunniran KO, Siyanbola TO, Sahu S, Chaubey R (2011) Towards reforming technologies for production of hydrogen exclusively from renewable resources. Green Chem 13:2272CrossRef
6.
go back to reference Midili A, Ay M, Kale A, Veziroglu TN (2007) A parametric investigation of hydrogen energy potential based on H2S in Black Sea deepwaters. Int J Hydrogen Energy 32:117–124CrossRef Midili A, Ay M, Kale A, Veziroglu TN (2007) A parametric investigation of hydrogen energy potential based on H2S in Black Sea deepwaters. Int J Hydrogen Energy 32:117–124CrossRef
7.
go back to reference National Library of Medicine. Hydrogen sulfide (3/2/89). In: Hazardous substances data base (online file). Washington, D.C.: US DHHS, PHS, NIH, MEDLARS Management Section National Library of Medicine. Hydrogen sulfide (3/2/89). In: Hazardous substances data base (online file). Washington, D.C.: US DHHS, PHS, NIH, MEDLARS Management Section
8.
go back to reference Benson SW (1978) Termochemistry and kinetics of sulfur-containing molecules and radicals. Chem Rev 78(1):23–35CrossRef Benson SW (1978) Termochemistry and kinetics of sulfur-containing molecules and radicals. Chem Rev 78(1):23–35CrossRef
9.
go back to reference Kaloidas V, Papayannakos N (1987) Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/S i , (i = 1,…,8) in the gas phase. Int J Hydrogen Energy 12(6):403–409CrossRef Kaloidas V, Papayannakos N (1987) Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/S i , (i = 1,…,8) in the gas phase. Int J Hydrogen Energy 12(6):403–409CrossRef
10.
go back to reference Zaman J, Chakma A (1995) Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 41:159–198CrossRef Zaman J, Chakma A (1995) Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 41:159–198CrossRef
11.
go back to reference Luinstra EA (1995) Hydrogen from H2S: technologies and economics. Sulfotech Research, May Luinstra EA (1995) Hydrogen from H2S: technologies and economics. Sulfotech Research, May
12.
go back to reference Cox BG, Clarke PF, Pruden BB (1998) Economics of thermal dissociation of H2S to produce hydrogen. Int J Hydrogen Energy 23(7):531–544CrossRef Cox BG, Clarke PF, Pruden BB (1998) Economics of thermal dissociation of H2S to produce hydrogen. Int J Hydrogen Energy 23(7):531–544CrossRef
13.
go back to reference Startsev AN, Zakharov II, Voroshina OV, Pashigreva AV, Parmon VN (2004) Low-temperature decomposition of hydrogen sulfide under the conditions of conjugate chemisorption and catalysis. Dokl Phys Chem 399(1):283–286CrossRef Startsev AN, Zakharov II, Voroshina OV, Pashigreva AV, Parmon VN (2004) Low-temperature decomposition of hydrogen sulfide under the conditions of conjugate chemisorption and catalysis. Dokl Phys Chem 399(1):283–286CrossRef
14.
go back to reference Zakharov II, Startsev AN, Voroshina OV, Pashigreva AV, Chashkova NA, Parmon VN (2006) The molecular mechanism of low-temperature decomposition of hydrogen sulfide under conjugated chemisorption–catalysis conditions. Russ J Phys Chem 80(9):1403–1410CrossRef Zakharov II, Startsev AN, Voroshina OV, Pashigreva AV, Chashkova NA, Parmon VN (2006) The molecular mechanism of low-temperature decomposition of hydrogen sulfide under conjugated chemisorption–catalysis conditions. Russ J Phys Chem 80(9):1403–1410CrossRef
15.
go back to reference Aleshina GI, Aksenov DG, Startsev AN (1998) Use of thermo-programmed technique to look for occluded hydrogen in the sulfide catalysts. Proceedings of international symposium on molecular aspects of catalysis by sulfides. Novosibirsk, p 100–102 Aleshina GI, Aksenov DG, Startsev AN (1998) Use of thermo-programmed technique to look for occluded hydrogen in the sulfide catalysts. Proceedings of international symposium on molecular aspects of catalysis by sulfides. Novosibirsk, p 100–102
16.
go back to reference Startsev AN, Aleshina GI, Aksenov DG (2001) Temperature-programmed heating to study sulfide catalysts: a comparison of reduction and desorption modes. Proceedings of 2nd international symposium on molecular aspects of catalysis by sulfides. Porqueroles, p 33 Startsev AN, Aleshina GI, Aksenov DG (2001) Temperature-programmed heating to study sulfide catalysts: a comparison of reduction and desorption modes. Proceedings of 2nd international symposium on molecular aspects of catalysis by sulfides. Porqueroles, p 33
17.
go back to reference Raymont MED (1975) Make hydrogen from hydrogen sulfide. Hydrocarbon Process 7:139–142 Raymont MED (1975) Make hydrogen from hydrogen sulfide. Hydrocarbon Process 7:139–142
18.
go back to reference Busev AI, Simonova LN (1975) Analytical chemistry of sulfur. Nauka, Moscow, p 66 Busev AI, Simonova LN (1975) Analytical chemistry of sulfur. Nauka, Moscow, p 66
19.
go back to reference Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford
20.
go back to reference Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
27.
go back to reference Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New York, p 564CrossRef Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New York, p 564CrossRef
28.
go back to reference Wayne FD, Davies PB, Thrush BA (1974) The gas-phase E.P.R. spectrum of diatomic sulphur molecules. Mol Phys 28(4):989–996CrossRef Wayne FD, Davies PB, Thrush BA (1974) The gas-phase E.P.R. spectrum of diatomic sulphur molecules. Mol Phys 28(4):989–996CrossRef
29.
go back to reference Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2005) RF Patent 2,261,838, 10 Oct 2005 Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2005) RF Patent 2,261,838, 10 Oct 2005
30.
go back to reference Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2007) Ukraine Patent 81,088, 26 Nov 2007 Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2007) Ukraine Patent 81,088, 26 Nov 2007
31.
go back to reference Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2008) Kazakhstan Patent 57,481, 15 Dec 2008 Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN (2008) Kazakhstan Patent 57,481, 15 Dec 2008
32.
go back to reference Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN, (2007) US Patent 7,611,685, 3 Nov 2009 Startsev AN, Pashigreva AV, Voroshina OV, Zakharov II, Parmon VN, (2007) US Patent 7,611,685, 3 Nov 2009
33.
go back to reference Feher F, Laue W, Winkhaus G (1956) Uber die Darstellung der Sulfane H2S2, H2S3, H2S4 und H2S5. Z anorg Algem Chemie 288(3–4):113CrossRef Feher F, Laue W, Winkhaus G (1956) Uber die Darstellung der Sulfane H2S2, H2S3, H2S4 und H2S5. Z anorg Algem Chemie 288(3–4):113CrossRef
34.
go back to reference Alfonso DR (2008) First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf Sci 602:2758–2768CrossRef Alfonso DR (2008) First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf Sci 602:2758–2768CrossRef
35.
go back to reference Koestner RJ, Salmeron M, Kollin EB, Gland JL (1986) Adsorption and surface reactions of H2S on clean and S-covered Pt(111). Surf Sci 172(3):668–690CrossRef Koestner RJ, Salmeron M, Kollin EB, Gland JL (1986) Adsorption and surface reactions of H2S on clean and S-covered Pt(111). Surf Sci 172(3):668–690CrossRef
36.
go back to reference Rodriguez JA, Hrbek J, Kuhn M, Jirsak T, Chaturvedi S, Maiti A (2000) Interaction of sulfur with Pt(111) and Sn/Pt(111): effects of coverage and metal–metal bonding on reactivity toward sulfur. J Chem Phys 113(24):11284–11292CrossRef Rodriguez JA, Hrbek J, Kuhn M, Jirsak T, Chaturvedi S, Maiti A (2000) Interaction of sulfur with Pt(111) and Sn/Pt(111): effects of coverage and metal–metal bonding on reactivity toward sulfur. J Chem Phys 113(24):11284–11292CrossRef
37.
go back to reference Meyer B (1965) Elemental sulfur: chemistry and physics. Interscience, New York Meyer B (1965) Elemental sulfur: chemistry and physics. Interscience, New York
38.
go back to reference Schmidt M (1962) Sulfur polymers. In: Stone FGA, Graham WGA (eds) Inorganic polymers. Academic Press, New York, p 98 Schmidt M (1962) Sulfur polymers. In: Stone FGA, Graham WGA (eds) Inorganic polymers. Academic Press, New York, p 98
39.
go back to reference Muller A, Krebs B (eds) (1984) Sulfur—its significance for chemistry, for geo-, bio-, and cosmosphere and technology. Elsevier, Amsterdam Muller A, Krebs B (eds) (1984) Sulfur—its significance for chemistry, for geo-, bio-, and cosmosphere and technology. Elsevier, Amsterdam
40.
go back to reference Steudel IR (ed) (2003) Elemental sulfur and sulfur-rich compounds. Springer, Heidelberg Steudel IR (ed) (2003) Elemental sulfur and sulfur-rich compounds. Springer, Heidelberg
41.
go back to reference Pryor W (1962) Mechanisms of sulfur reactions. McGraw-Hill Book Co., Inc, New York Pryor W (1962) Mechanisms of sulfur reactions. McGraw-Hill Book Co., Inc, New York
42.
go back to reference Chao J (1980) Properties of elemental sulfur. Hydrocarbon Process 10:217 Chao J (1980) Properties of elemental sulfur. Hydrocarbon Process 10:217
43.
go back to reference Rau H, Kutty TRN, de Carvalho JRFG (1973) Thermodynamics of sulfur vapor. J Chem Thermodyn 5:833–844CrossRef Rau H, Kutty TRN, de Carvalho JRFG (1973) Thermodynamics of sulfur vapor. J Chem Thermodyn 5:833–844CrossRef
44.
go back to reference Steudel R, Steudel Y, Wong MW (2003) Speciation and thermodynamics of sulfur vapor. Top Curr Chem 230:117–134CrossRef Steudel R, Steudel Y, Wong MW (2003) Speciation and thermodynamics of sulfur vapor. Top Curr Chem 230:117–134CrossRef
45.
go back to reference Meschi DJ, Searcy AW (1969) Investigation of the magnetic moments of S2, Se2, Te2, and Se5 by the Stern–Gerlach magnetic deflection method. J Chem Phys 51(11):5134–5138CrossRef Meschi DJ, Searcy AW (1969) Investigation of the magnetic moments of S2, Se2, Te2, and Se5 by the Stern–Gerlach magnetic deflection method. J Chem Phys 51(11):5134–5138CrossRef
46.
go back to reference Yee KK, Barrow RF, Rogstad A (1972) Resonance fluorescence and Raman spectra of gaseous sulfur. JCS Faraday II 68:1808–1811CrossRef Yee KK, Barrow RF, Rogstad A (1972) Resonance fluorescence and Raman spectra of gaseous sulfur. JCS Faraday II 68:1808–1811CrossRef
47.
go back to reference Brewer L, Bradson GD, Meyer B (1965) UV absorption spectrum of trapped S2. J Chem Phys 4(4):1385–1389CrossRef Brewer L, Bradson GD, Meyer B (1965) UV absorption spectrum of trapped S2. J Chem Phys 4(4):1385–1389CrossRef
48.
go back to reference Brewer L, Bradson GD (1966) Ultraviolet fluorescent and absorption spectra of S2 isolated in inert-gas matrices. J Chem Phys 44(9):3274–3278CrossRef Brewer L, Bradson GD (1966) Ultraviolet fluorescent and absorption spectra of S2 isolated in inert-gas matrices. J Chem Phys 44(9):3274–3278CrossRef
49.
go back to reference Barletta RF, Claassen HH, McBeth RL (1971) Raman Spectrum of S2. J Chem Phys 55(11):540910CrossRef Barletta RF, Claassen HH, McBeth RL (1971) Raman Spectrum of S2. J Chem Phys 55(11):540910CrossRef
50.
go back to reference Swope WC, Lee Y-P, Schafer HF (1979) Diatomic sulfur: low lying bound molecular electronic state of S2. J Chem Phys 70(2):947–949CrossRef Swope WC, Lee Y-P, Schafer HF (1979) Diatomic sulfur: low lying bound molecular electronic state of S2. J Chem Phys 70(2):947–949CrossRef
51.
go back to reference Hohl D, Jones RO, Car R, Parrinello M (1988) Structure of sulfur clusters using simulated annealing: S2 to S13. J Chem Phys 89(11):6823–6835CrossRef Hohl D, Jones RO, Car R, Parrinello M (1988) Structure of sulfur clusters using simulated annealing: S2 to S13. J Chem Phys 89(11):6823–6835CrossRef
52.
go back to reference Suontamo RJ, Laitinen RS, Pakkanen TA (1994) Molecular valence calculations on small clusters S2 to S5. J Mol Struct (Theochem) 313:189–197CrossRef Suontamo RJ, Laitinen RS, Pakkanen TA (1994) Molecular valence calculations on small clusters S2 to S5. J Mol Struct (Theochem) 313:189–197CrossRef
53.
go back to reference Millerfiori S, Alparone A (2001) Ab initio study of the structure and polarizability of sulfur clusters, Sn (n = 2–12). J Phys Chem A 105:9489CrossRef Millerfiori S, Alparone A (2001) Ab initio study of the structure and polarizability of sulfur clusters, Sn (n = 2–12). J Phys Chem A 105:9489CrossRef
54.
go back to reference Jones RO, Ballone P (2003) Structure and bonding in Sn ring and chains (n = 2–18). J Chem Phys 118(20):9257CrossRef Jones RO, Ballone P (2003) Structure and bonding in Sn ring and chains (n = 2–18). J Chem Phys 118(20):9257CrossRef
55.
go back to reference Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71(4):395–427CrossRef Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71(4):395–427CrossRef
56.
go back to reference Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1757CrossRef Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1757CrossRef
57.
58.
go back to reference Harpp DN (1997) The sulfur diatomic: generation and trapping chemistry. Phosphorus Sulfur Silicon 120 & 121: 41–59 Harpp DN (1997) The sulfur diatomic: generation and trapping chemistry. Phosphorus Sulfur Silicon 120 & 121: 41–59
59.
go back to reference Abu-Yousef IA (2006) The oraganic chemistry of diatomic sulfur. J Sulfur Chem 27(1):87–119CrossRef Abu-Yousef IA (2006) The oraganic chemistry of diatomic sulfur. J Sulfur Chem 27(1):87–119CrossRef
60.
go back to reference Zysman-Colman E, Harpp DN (2007) Fascinating organosulfur functionalities: polyhalcogens as diatomic sulfur sources. Heteroat Chem 18(5):449–459CrossRef Zysman-Colman E, Harpp DN (2007) Fascinating organosulfur functionalities: polyhalcogens as diatomic sulfur sources. Heteroat Chem 18(5):449–459CrossRef
61.
go back to reference Steliou K, Gareau Y, Harpp DN (1984) “S2”: generation and synthetic application. J Am Chem Soc 106(3):799–801CrossRef Steliou K, Gareau Y, Harpp DN (1984) “S2”: generation and synthetic application. J Am Chem Soc 106(3):799–801CrossRef
62.
go back to reference Ando W, Sonobe H, Akasaka T (1987) Generation of singlet diatomic sulfur from 9,10-epidithio-9,10-dihidroanthracene. Tetrahedron Lett 28(52):6653–6656CrossRef Ando W, Sonobe H, Akasaka T (1987) Generation of singlet diatomic sulfur from 9,10-epidithio-9,10-dihidroanthracene. Tetrahedron Lett 28(52):6653–6656CrossRef
Metadata
Title
Low Temperature Catalytic Decomposition of Hydrogen Sulfide into Hydrogen and Diatomic Gaseous Sulfur
Authors
A. N. Startsev
O. V. Kruglyakova
Yu. A. Chesalov
S. Ph. Ruzankin
E. A. Kravtsov
T. V. Larina
E. A. Paukshtis
Publication date
01-08-2013
Publisher
Springer US
Published in
Topics in Catalysis / Issue 11/2013
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0061-y

Other articles of this Issue 11/2013

Topics in Catalysis 11/2013 Go to the issue

Premium Partners