Skip to main content
Top
Published in: International Journal of Material Forming 6/2023

01-11-2023 | Original Research

Low velocity impact tube hydroforming process: experiments and FSI modeling by considering ductile damage model

Authors: Arman Mohseni, Javad Rezapour, Sina Gohari Rad, Reza Rajabiehfard

Published in: International Journal of Material Forming | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present paper aims to introduce a new finite element approach in numerical modeling of the impact tube hydroforming process. For this purpose, the coupled Eulerian-Lagrangian method is used to replicate the formation of the water flow, resulting from an impact, leading to the fabrication of flawless T-shaped copper tubes. One major advantage of such coupled Fluid-Structure Interaction (FSI) modeling is that it eliminates the need for measuring the parameters associated with the process including the internal pressure, and works with the minimum number of inputs such as the impact velocity. Moreover, ductile damage analysis has been performed in FE studies to further investigate the damage evolution in specimens. Experimental tests are also carried out to examine the viability of performing the impact tube hydroforming process in low velocities and also to validate the authenticity of the presented numerical method. Results corroborate the accuracy of the presented numerical approach in predicting the process parameters, the final shape, and the onset and evolution of rupture in fabricated tubes. The feasibility of this approach shows promise in wide application for finite element modeling of the hydroforming process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98(1):25–33CrossRef Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98(1):25–33CrossRef
2.
go back to reference Ra JH, Han SW, VanTyne CJ, Moon YH (2019) Manufacturing of a wire-reinforced aluminum tube via hydroforming process. Int J Mach Tools Manuf 143:1–15CrossRef Ra JH, Han SW, VanTyne CJ, Moon YH (2019) Manufacturing of a wire-reinforced aluminum tube via hydroforming process. Int J Mach Tools Manuf 143:1–15CrossRef
3.
go back to reference Cui XL, Yuan SJ (2019) Effects of superimposed hydrostatic pressure on bulging deformation and fracture of tubes in double-sided hydroforming. Arch Civil Mech Eng 19(2):569–583CrossRef Cui XL, Yuan SJ (2019) Effects of superimposed hydrostatic pressure on bulging deformation and fracture of tubes in double-sided hydroforming. Arch Civil Mech Eng 19(2):569–583CrossRef
4.
go back to reference Han S, Woo Y, Hwang T, Oh I, Moon YH (2019) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tools Manuf 138:51–65CrossRef Han S, Woo Y, Hwang T, Oh I, Moon YH (2019) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tools Manuf 138:51–65CrossRef
5.
go back to reference Lang L, Yuan S, Wang X, Wang ZR, Fu Z, Danckert J, Nielsen KB (2004) A study on numerical simulation of hydroforming of aluminum alloy tube. J Mater Process Technol 146(3):377–388CrossRef Lang L, Yuan S, Wang X, Wang ZR, Fu Z, Danckert J, Nielsen KB (2004) A study on numerical simulation of hydroforming of aluminum alloy tube. J Mater Process Technol 146(3):377–388CrossRef
6.
go back to reference Beerwald C, Beerwald M, Dirksen U, Henselek A (2010) Impulse hydroforming method for very thin sheets from metallic or hybrid materials. In 4th International Conference on High Speed Forming, March 9th-10th 2010 Columbus, Ohio, USA. Institut für Umformtechnik-Technische Universität Dortmund Beerwald C, Beerwald M, Dirksen U, Henselek A (2010) Impulse hydroforming method for very thin sheets from metallic or hybrid materials. In 4th International Conference on High Speed Forming, March 9th-10th 2010 Columbus, Ohio, USA. Institut für Umformtechnik-Technische Universität Dortmund
7.
go back to reference Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213(7):1191–1212CrossRef Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213(7):1191–1212CrossRef
8.
go back to reference Ma Y, Xu Y, Zhang SH, Banabic D, Abd El-Aty A, Chen DY, …, Chen GQ (2018) Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming. CIRP Ann 67(1):281–284 Ma Y, Xu Y, Zhang SH, Banabic D, Abd El-Aty A, Chen DY, …, Chen GQ (2018) Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming. CIRP Ann 67(1):281–284
9.
go back to reference Clark DS, Wood DS (1950) The tensile impact properties of some metals and alloys. Trans ASM 42:45–74 Clark DS, Wood DS (1950) The tensile impact properties of some metals and alloys. Trans ASM 42:45–74
10.
go back to reference Khodko O, Zaytsev V, Sukaylo V, Verezub N, Scicluna S (2015) Experimental and numerical investigation of processes that occur during high velocity hydroforming technologies: an example of tubular blank free bulging during hydrodynamic forming. J Manuf Process 20:304–313CrossRef Khodko O, Zaytsev V, Sukaylo V, Verezub N, Scicluna S (2015) Experimental and numerical investigation of processes that occur during high velocity hydroforming technologies: an example of tubular blank free bulging during hydrodynamic forming. J Manuf Process 20:304–313CrossRef
11.
go back to reference Lang LL, Wang SH, Yang C (2013) Research on the innovative hybrid impact hydroforming. AIP Conf Proc 1567(1):1107–1110CrossRef Lang LL, Wang SH, Yang C (2013) Research on the innovative hybrid impact hydroforming. AIP Conf Proc 1567(1):1107–1110CrossRef
12.
go back to reference Ali Tavoli M, Babaei H, Mohseni A, Rajabiehfard R (2016) Experimental and numerical forming of T shaped metallic tubes subjected to hydrodynamic loading. Modares Mech Eng 16(9):223–232 Ali Tavoli M, Babaei H, Mohseni A, Rajabiehfard R (2016) Experimental and numerical forming of T shaped metallic tubes subjected to hydrodynamic loading. Modares Mech Eng 16(9):223–232
13.
go back to reference Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Design 33:328–339CrossRef Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Design 33:328–339CrossRef
14.
go back to reference Ahmed M, Hashmi MSJ (1998) Three dimensional finite element simulation of axisymmetric tube bulging. In Proceedings of the Pacific Congress on Manufacturing and Management, Brisbane, Australia (pp. 515–521) Ahmed M, Hashmi MSJ (1998) Three dimensional finite element simulation of axisymmetric tube bulging. In Proceedings of the Pacific Congress on Manufacturing and Management, Brisbane, Australia (pp. 515–521)
15.
go back to reference Di Lorenzo R, Ingarao G, Chinesta F (2010) Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design. Adv Eng Softw 41(2):336–348CrossRef Di Lorenzo R, Ingarao G, Chinesta F (2010) Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design. Adv Eng Softw 41(2):336–348CrossRef
16.
go back to reference Guo X, Liu Z, Wang H, Wang L, Ma F, Sun X, Tao J (2016) Hydroforming simulation and experiment of clad T-shapes. Int J Adv Manuf Technol 83(1):381–387CrossRef Guo X, Liu Z, Wang H, Wang L, Ma F, Sun X, Tao J (2016) Hydroforming simulation and experiment of clad T-shapes. Int J Adv Manuf Technol 83(1):381–387CrossRef
17.
go back to reference Williams BW, Worswick MJ, D’Amours G, Rahem A, Mayer R (2010) Influence of forming effects on the axial crush response of hydroformed aluminum alloy tubes. Int J Impact Eng 37(10):1008–1020CrossRef Williams BW, Worswick MJ, D’Amours G, Rahem A, Mayer R (2010) Influence of forming effects on the axial crush response of hydroformed aluminum alloy tubes. Int J Impact Eng 37(10):1008–1020CrossRef
18.
go back to reference HaihuiZhu Z, He Y, Lin K, Zheng XF, Yuan S (2020) The development of a novel forming limit diagram under nonlinear loading paths in tube hydroforming. Int J Mech Sci 172:2411–2502 HaihuiZhu Z, He Y, Lin K, Zheng XF, Yuan S (2020) The development of a novel forming limit diagram under nonlinear loading paths in tube hydroforming. Int J Mech Sci 172:2411–2502
19.
go back to reference Bell C, Corney J, Zuelli N, Savings D (2020) A state of art review of hydroforming technology. IntJ Mater Form 13:789–828CrossRef Bell C, Corney J, Zuelli N, Savings D (2020) A state of art review of hydroforming technology. IntJ Mater Form 13:789–828CrossRef
20.
go back to reference Fiorentino A, Cretti E, Braga D, Marzi R (2010) Friction in asymmetric feeding tube hydroforming. IntJ Mater Form 3:275–278CrossRef Fiorentino A, Cretti E, Braga D, Marzi R (2010) Friction in asymmetric feeding tube hydroforming. IntJ Mater Form 3:275–278CrossRef
21.
go back to reference Alitavoli M, Darvizeh A, Moghaddam M, Parghou P, Rajabiehfard R (2018) Numerical modeling based on coupled eulerian-lagrangian approach and experimental investigation of water jet spot welding process. Thin-Walled Struct 127:617–628CrossRef Alitavoli M, Darvizeh A, Moghaddam M, Parghou P, Rajabiehfard R (2018) Numerical modeling based on coupled eulerian-lagrangian approach and experimental investigation of water jet spot welding process. Thin-Walled Struct 127:617–628CrossRef
22.
go back to reference Mittal V, Chakraborty T, Matsagar V (2014) Dynamic analysis of liquid storage tank under blast using coupled Euler-Lagrange formulation. Thin-Walled Struct 84:91–111CrossRef Mittal V, Chakraborty T, Matsagar V (2014) Dynamic analysis of liquid storage tank under blast using coupled Euler-Lagrange formulation. Thin-Walled Struct 84:91–111CrossRef
23.
go back to reference Hsu CY, Liang CC, Teng TL, Nguyen AT (2013) A numerical study on high-speed water jet impact. Ocean Eng 72:98–106CrossRef Hsu CY, Liang CC, Teng TL, Nguyen AT (2013) A numerical study on high-speed water jet impact. Ocean Eng 72:98–106CrossRef
24.
go back to reference Guilkey JE, Harman T, Xia A, Kashiwa B, McMurtry P (2003) An eulerian-lagrangian approach for large deformation fluid structure interaction problems, part 1: algorithm development. WIT Transactions on The Built Environment, p 71 Guilkey JE, Harman T, Xia A, Kashiwa B, McMurtry P (2003) An eulerian-lagrangian approach for large deformation fluid structure interaction problems, part 1: algorithm development. WIT Transactions on The Built Environment, p 71
25.
go back to reference Sadeghi H, Davey K, Darvizeh R, Rajabiehfard R, Darvizeh A (2020) An investigation into finite similitude for high-rate loading processes: advantages in comparison to dimensional analysis and its practical implementation. Int J Impact Eng 140:103554CrossRef Sadeghi H, Davey K, Darvizeh R, Rajabiehfard R, Darvizeh A (2020) An investigation into finite similitude for high-rate loading processes: advantages in comparison to dimensional analysis and its practical implementation. Int J Impact Eng 140:103554CrossRef
26.
go back to reference Chizari M, Al-Hassani STS, Barrett LM (2008) Experimental and numerical study of water jet spot welding. J Mater Process Technol 198(1–3):213–219CrossRef Chizari M, Al-Hassani STS, Barrett LM (2008) Experimental and numerical study of water jet spot welding. J Mater Process Technol 198(1–3):213–219CrossRef
27.
go back to reference Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef
28.
go back to reference Simulia DS, Fallis A, Techniques D (2013) ABAQUS documentation. Abaqus 6(53):1689–1699 Simulia DS, Fallis A, Techniques D (2013) ABAQUS documentation. Abaqus 6(53):1689–1699
29.
go back to reference Hassannejadasl A, Green DE, Altenhof WJ, Maris C, Mason M (2013) Numerical modeling of multi-stage tube hydropiercing. Mater Des 46:235–246CrossRef Hassannejadasl A, Green DE, Altenhof WJ, Maris C, Mason M (2013) Numerical modeling of multi-stage tube hydropiercing. Mater Des 46:235–246CrossRef
Metadata
Title
Low velocity impact tube hydroforming process: experiments and FSI modeling by considering ductile damage model
Authors
Arman Mohseni
Javad Rezapour
Sina Gohari Rad
Reza Rajabiehfard
Publication date
01-11-2023
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 6/2023
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-023-01783-y

Other articles of this Issue 6/2023

International Journal of Material Forming 6/2023 Go to the issue

Developments in modelling and simulation..Japan, South Korea and China

Formability classifier for a TV back panel part with machine learning

Premium Partners