Skip to main content
Top

2018 | OriginalPaper | Chapter

Low-Voltage Low-Power FGMOS-Based Current Conveyor III

Authors : Charu Rana, Neelofer Afzal, Dinesh Prasad, Anu

Published in: Advances in Power Systems and Energy Management

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new realization of high-performance third-generation current conveyor (CCIII) is proposed in this paper. FGMOS technique is utilized to implement low-voltage CCIII. The inherited features of the proposed block are low supply-voltage, low-power dissipation, and high-output impedance at terminal Z. The circuit is simulated in SPICE using 0.13 µm CMOS technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sedra, A., Smith, K.: A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17, 132–133 (1979)CrossRef Sedra, A., Smith, K.: A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17, 132–133 (1979)CrossRef
2.
go back to reference Sedra, A., Roberts, G.: The current conveyor: history, progress and new results. IEE Proc. G1 37, 78–87 (1990) Sedra, A., Roberts, G.: The current conveyor: history, progress and new results. IEE Proc. G1 37, 78–87 (1990)
3.
go back to reference Fabre, A.: Third generation current conveyor: a new helpful active element. Electron. Lett. 33, 338–339 (1995)CrossRef Fabre, A.: Third generation current conveyor: a new helpful active element. Electron. Lett. 33, 338–339 (1995)CrossRef
4.
go back to reference Horng, J.-W., Weng, R.-M., Lee, M.-H., Chang, C.-W.: Universal active current filter using two multiple current output OTAs and one CCIII. Int. J. Electron. 87, 241–247 (1997)CrossRef Horng, J.-W., Weng, R.-M., Lee, M.-H., Chang, C.-W.: Universal active current filter using two multiple current output OTAs and one CCIII. Int. J. Electron. 87, 241–247 (1997)CrossRef
5.
go back to reference Abuelmaatti, M.T., Alzaher, H.A.: Multi-function active-only current-mode filter with three inputs and one output. Int. J. Electron. 85, 431–435 (1998)CrossRef Abuelmaatti, M.T., Alzaher, H.A.: Multi-function active-only current-mode filter with three inputs and one output. Int. J. Electron. 85, 431–435 (1998)CrossRef
6.
go back to reference Wang, H.-Y., Lee, C.-T.: Systematic synthesis of R-L and C-D immittances using single CCIII. Int. J. Electron. 8, 293–301 (2000)CrossRef Wang, H.-Y., Lee, C.-T.: Systematic synthesis of R-L and C-D immittances using single CCIII. Int. J. Electron. 8, 293–301 (2000)CrossRef
7.
go back to reference Chow, H.-C., Feng, W.-S.: New symmetrical buffer design for VLSI application. Int. J. Electron. 88, 779–797 (2001)CrossRef Chow, H.-C., Feng, W.-S.: New symmetrical buffer design for VLSI application. Int. J. Electron. 88, 779–797 (2001)CrossRef
8.
go back to reference Kuntman, H., Cicekoglu, O., Ozoguz, S.: A modified third generation current conveyor, its characteristic and applications. Frequenz 56, 47–54 (2002)CrossRef Kuntman, H., Cicekoglu, O., Ozoguz, S.: A modified third generation current conveyor, its characteristic and applications. Frequenz 56, 47–54 (2002)CrossRef
9.
go back to reference Zeki, A., Kuntman, H.: Accurate and high output impedance current mirror suitable for CMOS current output stages. Electron. Lett. 33, 1042–1043 (1997)CrossRef Zeki, A., Kuntman, H.: Accurate and high output impedance current mirror suitable for CMOS current output stages. Electron. Lett. 33, 1042–1043 (1997)CrossRef
10.
go back to reference Pal, K.: Realisation of current conveyor all-pass network. Int. J. Electron. 50, 165–168 (1981)CrossRef Pal, K.: Realisation of current conveyor all-pass network. Int. J. Electron. 50, 165–168 (1981)CrossRef
11.
go back to reference Higashimura, M., Fukui, Y.: Realization of all-pass networks using a current conveyor. Int. J. Electron. 65, 249–250 (1988)CrossRef Higashimura, M., Fukui, Y.: Realization of all-pass networks using a current conveyor. Int. J. Electron. 65, 249–250 (1988)CrossRef
12.
go back to reference Higashimura, M., Fukui, Y.: Realization of current mode all pass networks using a current conveyor. IEEE Trans. Circuits Syst. 37, 660–661 (1990)CrossRef Higashimura, M., Fukui, Y.: Realization of current mode all pass networks using a current conveyor. IEEE Trans. Circuits Syst. 37, 660–661 (1990)CrossRef
13.
go back to reference Soliman, A.M.: Generation of current conveyor based all-pass filters from op-amp based circuits. IEEE Trans. Circuits Syst. II 44, 324–330 (1997)CrossRef Soliman, A.M.: Generation of current conveyor based all-pass filters from op-amp based circuits. IEEE Trans. Circuits Syst. II 44, 324–330 (1997)CrossRef
14.
go back to reference Cicekoglu, O., Kuntman, H., Berk, S.: All-pass filters using a single current conveyor. Int. J. Electron. 86, 947–955 (1999)CrossRef Cicekoglu, O., Kuntman, H., Berk, S.: All-pass filters using a single current conveyor. Int. J. Electron. 86, 947–955 (1999)CrossRef
15.
go back to reference Khan, I., Maheshwari, S.: Simple first order all-pass section using a single CCII. Int. J. Electron. 87, 303–306 (2000)CrossRef Khan, I., Maheshwari, S.: Simple first order all-pass section using a single CCII. Int. J. Electron. 87, 303–306 (2000)CrossRef
16.
go back to reference Toker, A., Ozoguz, S., Cicekoglu, O., Acar, C.: Current-mode all pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Trans. Circuits Syst. II 47, 949–954 (2000)CrossRef Toker, A., Ozoguz, S., Cicekoglu, O., Acar, C.: Current-mode all pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Trans. Circuits Syst. II 47, 949–954 (2000)CrossRef
17.
go back to reference Rudell, G.W., Ou, J.J., Cho, T.B., Chien, G., Brianti, F., Weldon, J.A., Grey, P.A.: 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications. IEEE J. Solid-State Circuits 32, 2071–2088 (1997)CrossRef Rudell, G.W., Ou, J.J., Cho, T.B., Chien, G., Brianti, F., Weldon, J.A., Grey, P.A.: 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications. IEEE J. Solid-State Circuits 32, 2071–2088 (1997)CrossRef
18.
go back to reference Comer, D.J., Petrie, C.: The utility of the composite cascade in analog CMOS design. Int. J. Electron. 91, 491–498 (2004)CrossRef Comer, D.J., Petrie, C.: The utility of the composite cascade in analog CMOS design. Int. J. Electron. 91, 491–498 (2004)CrossRef
Metadata
Title
Low-Voltage Low-Power FGMOS-Based Current Conveyor III
Authors
Charu Rana
Neelofer Afzal
Dinesh Prasad
Anu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4394-9_66