Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

Lyapunov Matrix Equations for the Stability Analysis of Linear Time-Invariant Descriptor Systems

Author : Peter C. Müller

Published in: Progress in Differential-Algebraic Equations

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For the stability analysis of linear time-invariant descriptor systems two different generalizations of the classical Lyapunov matrix equation are considered. The first generalization includes the singular matrix related to the time-derivatives of the descriptor variables in an obviously symmetric form; the second one shows at a first sight no symmetry which additionally has to be asked for explicitly. This second approach is well-known for ‘admissible’ descriptor systems which includes a restriction to systems of index k = 1. In this contribution the second approach will be generalized to systems with arbitrary index k ≥ 1. Both approaches will be compared with each other showing different solvability conditions and different solutions in general. But for the problem of analyzing asymptotic stability the solution behaviors of the two generalized Lyapunov matrix equations coincide. In spite of the different procedures both approaches lead to the same Lyapunov function for the analysis of asymptotic stability of linear time-invariant descriptor systems. The two approaches will be illustrated by the stability analysis of mechanical descriptor systems, i.e. by mechanical systems with holonomic constrains. Although the application of the approaches usually is very costly, they represent suitable tools for the stability analysis of linear time-invariant descriptor systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436, 4052–069 (2012)CrossRefMATHMathSciNet Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436, 4052–069 (2012)CrossRefMATHMathSciNet
2.
go back to reference Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin (1989) Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin (1989)
3.
go back to reference Duan, G.-R.: Analysis and Design of Descriptor Linear Systems. Advances in Mechanics and Mathematics, vol. 23, Springer, New York (2010) Duan, G.-R.: Analysis and Design of Descriptor Linear Systems. Advances in Mechanics and Mathematics, vol. 23, Springer, New York (2010)
4.
go back to reference Hou, M.: Descriptor Systems: Observers and Fault Diagnosis. Fortschr.-Ber. VDI, Reihe 8, Nr. 482. VDI, Düsseldorf (1995) Hou, M.: Descriptor Systems: Observers and Fault Diagnosis. Fortschr.-Ber. VDI, Reihe 8, Nr. 482. VDI, Düsseldorf (1995)
5.
go back to reference Ishihara, J.Y., Terra, M.H.: On the Lyapunov theorem for singular systems. IEEE Trans. Autom. Control 47, 1926–1930 (2002)CrossRefMathSciNet Ishihara, J.Y., Terra, M.H.: On the Lyapunov theorem for singular systems. IEEE Trans. Autom. Control 47, 1926–1930 (2002)CrossRefMathSciNet
6.
go back to reference Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorenson, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 83–115. Springer, Berlin (2005)CrossRef Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorenson, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 83–115. Springer, Berlin (2005)CrossRef
7.
go back to reference Müller, P.C.: Stabilität und Matrizen. Springer, Berlin (1977)MATH Müller, P.C.: Stabilität und Matrizen. Springer, Berlin (1977)MATH
8.
go back to reference Müller, P.C.: Stability of linear mechanical systems with holonomic constraints. Appl. Mech. Rev. 46(11, part 2), 160–164 (1993) Müller, P.C.: Stability of linear mechanical systems with holonomic constraints. Appl. Mech. Rev. 46(11, part 2), 160–164 (1993)
9.
go back to reference Müller, P.C.: Characteristics of LTI descriptor systems. PAMM-Proc. Appl. Math. Mech. 11, 831–832 (2011)CrossRef Müller, P.C.: Characteristics of LTI descriptor systems. PAMM-Proc. Appl. Math. Mech. 11, 831–832 (2011)CrossRef
10.
go back to reference Müller, P.C.: Generalized Lyapunov matrix equation revisited. In: Proceedings of the XV International Symppsium on Dynamic Problems of Mechanics (DINAME 2013), Buzios RJ, Brazil (2013) Müller, P.C.: Generalized Lyapunov matrix equation revisited. In: Proceedings of the XV International Symppsium on Dynamic Problems of Mechanics (DINAME 2013), Buzios RJ, Brazil (2013)
11.
go back to reference Owens, D.H., Debeljkovic, D.L.: Consistency and Liapunov stability of linear descriptor systems: a geometric analysis. IMA J. Math. Control Inf. 2, 139–151 (1985)CrossRefMATH Owens, D.H., Debeljkovic, D.L.: Consistency and Liapunov stability of linear descriptor systems: a geometric analysis. IMA J. Math. Control Inf. 2, 139–151 (1985)CrossRefMATH
12.
go back to reference Rehm, A.: Control of Linear Descriptor Systems: A Matrix Inequality Approach. Fortschr.-Ber. VDI, Reihe 8, Nr. 1019. VDI, Düsseldorf (2004) Rehm, A.: Control of Linear Descriptor Systems: A Matrix Inequality Approach. Fortschr.-Ber. VDI, Reihe 8, Nr. 1019. VDI, Düsseldorf (2004)
13.
go back to reference Schüpphaus, R.: Regelungstechnische Analyse und Synthese von Mehrkörpersystemen in Deskriptorform. Fortschr.-Ber. VDI, Reihe 8, Nr. 478. VDI, Düsseldorf (1995) Schüpphaus, R.: Regelungstechnische Analyse und Synthese von Mehrkörpersystemen in Deskriptorform. Fortschr.-Ber. VDI, Reihe 8, Nr. 478. VDI, Düsseldorf (1995)
14.
go back to reference Stykel, T.: Analysis and numerical solution of generalized Lyapunov equations. Ph.D. thesis, Institute for Mathematics, TU Berlin (2002) Stykel, T.: Analysis and numerical solution of generalized Lyapunov equations. Ph.D. thesis, Institute for Mathematics, TU Berlin (2002)
15.
go back to reference Tabaka, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor systems. Syst. Control Lett. 24, 49–51 (1995)CrossRef Tabaka, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor systems. Syst. Control Lett. 24, 49–51 (1995)CrossRef
16.
17.
go back to reference Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: Computational aspects. Linear Algebra Appl. 50, 545–579 (1983)CrossRefMATHMathSciNet Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: Computational aspects. Linear Algebra Appl. 50, 545–579 (1983)CrossRefMATHMathSciNet
Metadata
Title
Lyapunov Matrix Equations for the Stability Analysis of Linear Time-Invariant Descriptor Systems
Author
Peter C. Müller
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44926-4_1

Premium Partner