Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2021

07-01-2021 | Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

Machine Learning Approach to Design High Entropy Alloys with Heterogeneous Grain Structures

Authors: Li Li, Baobin Xie, Qihong Fang, Jia Li

Published in: Metallurgical and Materials Transactions A | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Heterogeneous nanocrystalline high-entropy alloys (HEAs) have excellent mechanical properties. However, it is still difficult to obtain the optimized grain size in the heterogeneous-grained HEAs, which achieves their outstanding mechanical properties. Here, using a novel integration method of machine learning, a physical model and atomic simulation, the optimal grain size is designed for achieving high yield strength of heterogeneous-grained CrCoFeNi HEAs. Atomic simulations give the stress–strain curve, yielding strength and microstructure with the increase of small grain size. The physical-based strength model expands the data from the atomic simulations and obtains the transition region from the Hall–Petch to inverse Hall–Petch relationship. The results show that the strength of CrCoFeNi HEAs derives mainly from the contribution of the grain boundary compared to lattice friction stress. The machine learning model shows that the obvious transition point from the Hall–Petch to inverse Hall–Petch relationship occurs at the grain size of 38.4 nm for the heterogeneous-grained CrCoFeNi HEAs with the large grain size of 165 nm. This result agrees with the prediction from the subsequent atomic simulation. This integrated model makes significant contributions to understanding deformation and designing the microstructure of heterogeneous-grained HEAs. Importantly, the developed model including simulation, a theoretical model, experiment and machine learning can be widely applied to explore the advanced material with the desired performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
3.
go back to reference E.P. George, D. Raabe, and R.O. Ritchie: Nat. Rev. Mater., 2019, vol. 4, pp. 515-34.CrossRef E.P. George, D. Raabe, and R.O. Ritchie: Nat. Rev. Mater., 2019, vol. 4, pp. 515-34.CrossRef
4.
go back to reference Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nano Lett., 2017, vol. 17, pp. 1569-74.CrossRef Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nano Lett., 2017, vol. 17, pp. 1569-74.CrossRef
5.
go back to reference Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, and H. Ruan: Sci. Rep., 2014, vol. 4, pp. 6200-05.CrossRef Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, and H. Ruan: Sci. Rep., 2014, vol. 4, pp. 6200-05.CrossRef
6.
go back to reference P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, and P.K. Liaw: Nat. Commun., 2019, vol. 10, pp. 1-8.CrossRef P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, and P.K. Liaw: Nat. Commun., 2019, vol. 10, pp. 1-8.CrossRef
7.
go back to reference S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, and P.K. Liaw: Acta Mater., 2019, vol. 165, pp. 444-58.CrossRef S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, and P.K. Liaw: Acta Mater., 2019, vol. 165, pp. 444-58.CrossRef
8.
go back to reference W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, and C.T. Liu: Acta Mater., 2016, vol. 116, pp. 332-42.CrossRef W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, and C.T. Liu: Acta Mater., 2016, vol. 116, pp. 332-42.CrossRef
9.
go back to reference D. Huang, J. Lu, Y. Zhuang, C. Tian, and Y. Li: Corros. Sci., 2019, vol. 158, pp. 108088.CrossRef D. Huang, J. Lu, Y. Zhuang, C. Tian, and Y. Li: Corros. Sci., 2019, vol. 158, pp. 108088.CrossRef
10.
go back to reference M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Acta Mater., 2011, vol. 59, pp. 6308-17.CrossRef M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Acta Mater., 2011, vol. 59, pp. 6308-17.CrossRef
12.
go back to reference J.S. Hu, Y. Shi, X. Sauvage, G. Sha, and K. Lu: Science., 2017, vol. 355, pp. 1292-96.CrossRef J.S. Hu, Y. Shi, X. Sauvage, G. Sha, and K. Lu: Science., 2017, vol. 355, pp. 1292-96.CrossRef
13.
go back to reference B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Acta Mater., 2015, vol. 96, pp. 258-68.CrossRef B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Acta Mater., 2015, vol. 96, pp. 258-68.CrossRef
14.
go back to reference D.H. Lee, J.A. Lee, Y. Zhao, Z. Lu, J.Y. Suh, J.Y. Kim, and J.I. Jang: Acta Mater., 2017, vol. 140, pp. 443-51.CrossRef D.H. Lee, J.A. Lee, Y. Zhao, Z. Lu, J.Y. Suh, J.Y. Kim, and J.I. Jang: Acta Mater., 2017, vol. 140, pp. 443-51.CrossRef
15.
go back to reference S. Varalakshmi, M. Kamaraj, and B.S. Murty: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1027-30.CrossRef S. Varalakshmi, M. Kamaraj, and B.S. Murty: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1027-30.CrossRef
16.
go back to reference W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu: Scr. Mater., 2013, vol. 68, pp. 526-29.CrossRef W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu: Scr. Mater., 2013, vol. 68, pp. 526-29.CrossRef
18.
19.
go back to reference M. Rupp, A. Tkatchenko, K.R. Müller, and O.A.V. Lilienfeld: Phys. Rev. Lett., 2012, vol. 108, pp. 058301.CrossRef M. Rupp, A. Tkatchenko, K.R. Müller, and O.A.V. Lilienfeld: Phys. Rev. Lett., 2012, vol. 108, pp. 058301.CrossRef
20.
21.
go back to reference [21] L. Ward, A. Agrawal, A. Choudhary, and C. Wolvertonv: NPJ Comput. Mater., 2016, vol. 2, p. 16028.CrossRef [21] L. Ward, A. Agrawal, A. Choudhary, and C. Wolvertonv: NPJ Comput. Mater., 2016, vol. 2, p. 16028.CrossRef
22.
go back to reference Y. Liu, J. Zhang, and J. Zhong: Comput. Mater. Sci., 2008, vol. 43, pp. 752-58.CrossRef Y. Liu, J. Zhang, and J. Zhong: Comput. Mater. Sci., 2008, vol. 43, pp. 752-58.CrossRef
23.
go back to reference H. Bhadeshiam: Encycl. Mater. Sci. Technol., 2008, vol. 10, pp. 1-5. H. Bhadeshiam: Encycl. Mater. Sci. Technol., 2008, vol. 10, pp. 1-5.
25.
go back to reference [25] N. Islam, W.J. Huang, and H.L.L. Zhuang: Comput. Mater. Sci., 2018, vol. 150, pp. 230-35.CrossRef [25] N. Islam, W.J. Huang, and H.L.L. Zhuang: Comput. Mater. Sci., 2018, vol. 150, pp. 230-35.CrossRef
26.
27.
go back to reference P. Sathiyamoorthi and H.S. Kim: Prog. Mater. Sci., 2020, vol. 115, pp. 100709. P. Sathiyamoorthi and H.S. Kim: Prog. Mater. Sci., 2020, vol. 115, pp. 100709.
28.
go back to reference [29] P. Sathiyamoorthi, P. Asghari-Rad, J.M. Park, J. Moon, J.W. Bae, A. Zargaran, and H.S. Kim: Mater. Sci. Eng. A, 2019, vol. 766, pp. 138372.CrossRef [29] P. Sathiyamoorthi, P. Asghari-Rad, J.M. Park, J. Moon, J.W. Bae, A. Zargaran, and H.S. Kim: Mater. Sci. Eng. A, 2019, vol. 766, pp. 138372.CrossRef
29.
go back to reference Morris Wang Y, Sansoz F, LaGrange T, Ott RT, Marian J, Barbee TW Jr, Hamza AV (2013) Nat Mater 12:697–2CrossRef Morris Wang Y, Sansoz F, LaGrange T, Ott RT, Marian J, Barbee TW Jr, Hamza AV (2013) Nat Mater 12:697–2CrossRef
30.
go back to reference [31] J. Li, L. Li, C. Jiang, Q. Fang, F. Liu, Y. Liu, and P.K. Liaw: J. Mater. Sci. Technol., 2020, vol. 57, pp. 85-91CrossRef [31] J. Li, L. Li, C. Jiang, Q. Fang, F. Liu, Y. Liu, and P.K. Liaw: J. Mater. Sci. Technol., 2020, vol. 57, pp. 85-91CrossRef
32.
go back to reference [33] Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, and P.K. Liaw: Int. J. Plast., 2019, vol. 114, pp. 161-73.CrossRef [33] Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, and P.K. Liaw: Int. J. Plast., 2019, vol. 114, pp. 161-73.CrossRef
33.
go back to reference [34] J. Li, H. Chen, Q. Fang, C. Jiang, Y. Liu, and P.K. Liaw: Int. J. Plast., 2020, vol. 133, pp. 102819.CrossRef [34] J. Li, H. Chen, Q. Fang, C. Jiang, Y. Liu, and P.K. Liaw: Int. J. Plast., 2020, vol. 133, pp. 102819.CrossRef
34.
go back to reference [35] A. Stukowski: Model. Simulat. Mater. Sci. Eng., 2010, vol. 18, p. 015012.CrossRef [35] A. Stukowski: Model. Simulat. Mater. Sci. Eng., 2010, vol. 18, p. 015012.CrossRef
35.
go back to reference [36] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao: J. Alloys Compd., 2017, vol. 696, pp. 1139-50.CrossRef [36] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao: J. Alloys Compd., 2017, vol. 696, pp. 1139-50.CrossRef
36.
go back to reference [37] L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P. K. Liaw: Mater. Sci. Eng. A, 2020, vol. 784, pp. 139323.CrossRef [37] L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P. K. Liaw: Mater. Sci. Eng. A, 2020, vol. 784, pp. 139323.CrossRef
37.
go back to reference [38] T. Clyne, and P. Withers, An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1995. [38] T. Clyne, and P. Withers, An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1995.
38.
go back to reference [39] Z. Wu, H. Bei, G. M. Pharr, and E. P. George: Acta Mater., 2014, vol. 81, pp. 428-41.CrossRef [39] Z. Wu, H. Bei, G. M. Pharr, and E. P. George: Acta Mater., 2014, vol. 81, pp. 428-41.CrossRef
39.
41.
go back to reference [42] W.J. Huang, P. Martin, and H.L. Zhuang: Acta Mater., 2019, vol. 169, pp. 225-36.CrossRef [42] W.J. Huang, P. Martin, and H.L. Zhuang: Acta Mater., 2019, vol. 169, pp. 225-36.CrossRef
42.
go back to reference [43] J.M. Smits, W. J. Melssen, L.C. Buydens, and G. Kateman: Chemometr. Intell. Lab., 1994, vol. 22, pp. 165-89.CrossRef [43] J.M. Smits, W. J. Melssen, L.C. Buydens, and G. Kateman: Chemometr. Intell. Lab., 1994, vol. 22, pp. 165-89.CrossRef
43.
go back to reference [44] T. H. Fang, W. L. Li, N. R. Tao, and K. Lu: Science, 2011, vol. 6024, pp. 1587.CrossRef [44] T. H. Fang, W. L. Li, N. R. Tao, and K. Lu: Science, 2011, vol. 6024, pp. 1587.CrossRef
44.
go back to reference [45] J. Li, Q. Fang, B. Liu, and Y. Liu: Acta Mater., 2018, vol. 147, pp. 35-41.CrossRef [45] J. Li, Q. Fang, B. Liu, and Y. Liu: Acta Mater., 2018, vol. 147, pp. 35-41.CrossRef
45.
go back to reference [46] R. G. Hoagland, and S. M. Valone: Philos. Mag., 2015, vol. 95, pp. 112-31.CrossRef [46] R. G. Hoagland, and S. M. Valone: Philos. Mag., 2015, vol. 95, pp. 112-31.CrossRef
46.
go back to reference [47] D. E. Spearot, K. I. Jacob, and D. L. McDowell: Int. J. Plast., 2007, vol. 23, pp. 143-60.CrossRef [47] D. E. Spearot, K. I. Jacob, and D. L. McDowell: Int. J. Plast., 2007, vol. 23, pp. 143-60.CrossRef
47.
go back to reference [48] Q. Lin, X. An, H. Liu, Q. Tang, P. Dai, and X. Liao, J. Alloy. Comp., 2017, vol. 709, pp. 802-7.CrossRef [48] Q. Lin, X. An, H. Liu, Q. Tang, P. Dai, and X. Liao, J. Alloy. Comp., 2017, vol. 709, pp. 802-7.CrossRef
48.
go back to reference [49] L. Li, H. Chen, Q. Fang, J. Li, F. Liu, Y. Liu, and P.K. Liaw: Intermetallics, 2020, vol. 120, pp. 106741.CrossRef [49] L. Li, H. Chen, Q. Fang, J. Li, F. Liu, Y. Liu, and P.K. Liaw: Intermetallics, 2020, vol. 120, pp. 106741.CrossRef
49.
go back to reference [50] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: Mater. Res. Lett., 2015, vol. 3, pp. 95-99.CrossRef [50] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: Mater. Res. Lett., 2015, vol. 3, pp. 95-99.CrossRef
50.
go back to reference [51] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. H. Dai, T. Lookman, and Y. Su: Acta Mater., 2019, vol. 170, pp. 109-17.CrossRef [51] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. H. Dai, T. Lookman, and Y. Su: Acta Mater., 2019, vol. 170, pp. 109-17.CrossRef
51.
go back to reference [52] J. Li, B. B. Xie, Q. H. Fang, B. Liu, Y. Liu, and P. K. Liaw: J. Mater. Sci. Technol., 2021, vol. 68, pp. 70-5.CrossRef [52] J. Li, B. B. Xie, Q. H. Fang, B. Liu, Y. Liu, and P. K. Liaw: J. Mater. Sci. Technol., 2021, vol. 68, pp. 70-5.CrossRef
53.
go back to reference R. Labusch: Phys. Stat. Sol. A, 1970, vol. 41, pp. 659. R. Labusch: Phys. Stat. Sol. A, 1970, vol. 41, pp. 659.
Metadata
Title
Machine Learning Approach to Design High Entropy Alloys with Heterogeneous Grain Structures
Authors
Li Li
Baobin Xie
Qihong Fang
Jia Li
Publication date
07-01-2021
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06099-z

Other articles of this Issue 2/2021

Metallurgical and Materials Transactions A 2/2021 Go to the issue

Premium Partners