Skip to main content
Top
Published in: Journal of Polymer Research 6/2020

01-06-2020 | ORIGINAL PAPER

Magnesium (II) bis(trifluoromethanesulfonimide) doped PVdC-co-AN gel polymer electrolytes for rechargeable batteries

Authors: D. Hambali, Z. Osman, L. Othman, K. B. Md Isa, N. Harudin

Published in: Journal of Polymer Research | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gel polymer electrolytes (GPEs) containing poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) as the polymer host and plastic crystal succinonitrile (SN) as plasticizer were prepared with varied concentrations of 5 to 30 wt.% of magnesium (II) bis(trifluoromethanesulfonimide) Mg(TFSI)2 salt. The highest room temperature ionic conductivity of 1.61 × 10−6 S cm−1 was obtained from the sample containing 20 wt.% of Mg(TFSI)2. The conductivity temperature dependence studies of the GPE system was found to obey the VTF relation. To study the interaction among the constituents in the GPEs as well as to confirm the complexation between them, Fourier transform infrared spectroscopy. (FTIR) was carried out. The analysis of FTIR spectra was further investigated by deconvolution of the FTIR spectra to prove the dependability of ionic conductivity with the presence of free ions, ion pairs, and ion aggregates in the GPEs. The amorphous nature of the GPEs were confirmed by X-ray diffraction (XRD) analysis while DSC studies revealed the relationship between the thermal stability of GPEs and ionic conductivity. The electrochemical study was also performed by linear sweep voltammetry (LSV) to verify the maximum withstand voltage of the electrolyte to be used in magnesium battery application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li X, Zhang Z, Li S et al (2016) Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries. J Power Sources 307:678–683 Li X, Zhang Z, Li S et al (2016) Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries. J Power Sources 307:678–683
2.
go back to reference Tang X, Muchakayala R, Song S et al (2016) Journal of Industrial and Engineering Chemistry A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74 Tang X, Muchakayala R, Song S et al (2016) Journal of Industrial and Engineering Chemistry A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74
3.
go back to reference Cheng H, Zhu C, Huang B et al (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794 Cheng H, Zhu C, Huang B et al (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794
4.
go back to reference Li W, Pang Y, Liu J et al (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501 Li W, Pang Y, Liu J et al (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501
5.
go back to reference Mohan VM, Raja V, Bhargav PB et al (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290 Mohan VM, Raja V, Bhargav PB et al (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290
6.
go back to reference Majid SR, Ariffin NE, Arof AK et al (2011) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42 Majid SR, Ariffin NE, Arof AK et al (2011) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42
7.
go back to reference Othman L, Isa KB, Osman Z, Yahya R (2013) Ionic Conductivity , Morphology and Transport Number of Lithium Ions in PMMA Based Gel Polymer Electrolytes. 335:4028 Othman L, Isa KB, Osman Z, Yahya R (2013) Ionic Conductivity , Morphology and Transport Number of Lithium Ions in PMMA Based Gel Polymer Electrolytes. 335:4028
8.
go back to reference Osman Z, Samin SM, Othman L, Md Isa KB (2012) Ionic transport in PMMA-NaCF3SO3 gel polymer electrolyte. Adv Mater Res 545:259–263 Osman Z, Samin SM, Othman L, Md Isa KB (2012) Ionic transport in PMMA-NaCF3SO3 gel polymer electrolyte. Adv Mater Res 545:259–263
9.
go back to reference Isa KB, Osman Z, Arof AK et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid State Ionics 268:288–293 Isa KB, Osman Z, Arof AK et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid State Ionics 268:288–293
10.
go back to reference Karuppasamy K, Reddy PA, Srinivas G et al (2016) Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries. J Memb Sci 514:350–357 Karuppasamy K, Reddy PA, Srinivas G et al (2016) Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries. J Memb Sci 514:350–357
11.
go back to reference Zalewska A, Dumińska J, Langwald N et al (2014) Preparation and performance of gel polymer electrolytes doped with ionic liquids and surface-modified inorganic fillers. Electrochim Acta 121:337–344 Zalewska A, Dumińska J, Langwald N et al (2014) Preparation and performance of gel polymer electrolytes doped with ionic liquids and surface-modified inorganic fillers. Electrochim Acta 121:337–344
12.
go back to reference Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831 Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831
13.
go back to reference Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589 Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589
14.
go back to reference Chong WG, Osman Z (2014) The effect of carbonate-phthalate plasticizers on structural, morphological and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J Polym Res 21:381 Chong WG, Osman Z (2014) The effect of carbonate-phthalate plasticizers on structural, morphological and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J Polym Res 21:381
15.
go back to reference Yang C-M, Kim H-S, Na B-K et al (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580 Yang C-M, Kim H-S, Na B-K et al (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580
16.
go back to reference Lu Q, Fang J, Yang J et al (2013) A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J Memb Sci 425–426:105–112 Lu Q, Fang J, Yang J et al (2013) A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J Memb Sci 425–426:105–112
17.
go back to reference Pu W, He X, Wang L et al (2006) Preparation of P(AN–MMA) microporous membrane for Li-ion batteries by phase inversion. J Memb Sci 280:6–9 Pu W, He X, Wang L et al (2006) Preparation of P(AN–MMA) microporous membrane for Li-ion batteries by phase inversion. J Memb Sci 280:6–9
18.
go back to reference Taib NU, Hayati N (2014) Plastic crystal – solid biopolymer electrolytes for rechargeable lithium batteries. J Memb Sci 468:149–154 Taib NU, Hayati N (2014) Plastic crystal – solid biopolymer electrolytes for rechargeable lithium batteries. J Memb Sci 468:149–154
19.
go back to reference Aslan A, Gölcük K, Bozkurt A (2012) Nanocomposite polymer electrolytes membranes based on poly(vinylphosphonic acid)/SiO2. J Polym Res 19:22 Aslan A, Gölcük K, Bozkurt A (2012) Nanocomposite polymer electrolytes membranes based on poly(vinylphosphonic acid)/SiO2. J Polym Res 19:22
20.
go back to reference Gupta RK, Rhee H-W (2012) Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164 Gupta RK, Rhee H-W (2012) Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164
21.
go back to reference Patel M, Chandrappa KG, Bhattacharyya AJ (2008) Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer. Electrochim Acta 54:209–215 Patel M, Chandrappa KG, Bhattacharyya AJ (2008) Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer. Electrochim Acta 54:209–215
22.
go back to reference Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes 47:3583–3590 Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes 47:3583–3590
23.
go back to reference Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964 Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964
24.
go back to reference Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364 Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364
25.
go back to reference Saha P, Kanchan M, Velikokhatnyi OI (2014) Progress in materials science rechargeable magnesium battery : current status and key challenges for the future. Prog Mater Sci 66:1–86 Saha P, Kanchan M, Velikokhatnyi OI (2014) Progress in materials science rechargeable magnesium battery : current status and key challenges for the future. Prog Mater Sci 66:1–86
26.
go back to reference Oh J, Ko J, Kim D (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta 50:903–906 Oh J, Ko J, Kim D (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta 50:903–906
27.
go back to reference Kumar GG, Munichandraiah N (2000) Solid-state mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate. J Power Sources 91:157–160 Kumar GG, Munichandraiah N (2000) Solid-state mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate. J Power Sources 91:157–160
28.
go back to reference Shterenberg I, Salama M, Yoo HD et al (2015) Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for mg batteries. J Electrochem Soc 162:A7118–A7128 Shterenberg I, Salama M, Yoo HD et al (2015) Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for mg batteries. J Electrochem Soc 162:A7118–A7128
29.
go back to reference Cheng Y, Stolley RM, Han KS et al (2015) Highly active electrolytes for rechargeable mg batteries based on a [Mg2(μ-cl)2]2+ cation complex in dimethoxyethane. Phys Chem Chem Phys 17:13307–13314PubMed Cheng Y, Stolley RM, Han KS et al (2015) Highly active electrolytes for rechargeable mg batteries based on a [Mg2(μ-cl)2]2+ cation complex in dimethoxyethane. Phys Chem Chem Phys 17:13307–13314PubMed
30.
go back to reference Ha SY, Lee YW, Woo SW, Koo B, Kim JS, Cho J, Lee KT, Choi NS (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6:4063–4073PubMed Ha SY, Lee YW, Woo SW, Koo B, Kim JS, Cho J, Lee KT, Choi NS (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6:4063–4073PubMed
31.
go back to reference Moniha V, Alagar M, Selvasekarapandian S et al (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434 Moniha V, Alagar M, Selvasekarapandian S et al (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434
32.
go back to reference Johan MR, Shy OH, Ibrahim S et al (2011) Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196:41–47 Johan MR, Shy OH, Ibrahim S et al (2011) Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196:41–47
33.
go back to reference Imperiyka M, Ahmad A, Hanifah SA et al (2014) Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application. Int J Hydrog Energy 39:3018–3024 Imperiyka M, Ahmad A, Hanifah SA et al (2014) Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application. Int J Hydrog Energy 39:3018–3024
34.
go back to reference Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021 Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021
35.
go back to reference Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376 Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376
36.
go back to reference Druger SD, Ratner MA, Nitzan A (1985) Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys Rev B 31:3939–3947 Druger SD, Ratner MA, Nitzan A (1985) Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys Rev B 31:3939–3947
37.
go back to reference Premila R, Subbu C, Rajendran S, Selva Kumar K (2017) Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl Surf Sci 449:426–434 Premila R, Subbu C, Rajendran S, Selva Kumar K (2017) Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl Surf Sci 449:426–434
38.
go back to reference Isa KB, Osman Z, Arof AK, et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid state Ionics 3–8 Isa KB, Osman Z, Arof AK, et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid state Ionics 3–8
39.
go back to reference Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124 Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124
40.
go back to reference Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634 Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634
41.
go back to reference Shi FG, Nieh TG, Okuyama K (2000) Electrical conduction in solid polymer electrolytes: temperature dependence mechanism. Microelectron J 31:261–265 Shi FG, Nieh TG, Okuyama K (2000) Electrical conduction in solid polymer electrolytes: temperature dependence mechanism. Microelectron J 31:261–265
42.
go back to reference Kumar R, Rhee H (2012) Electrochimica Acta Effect of succinonitrile on electrical , structural , optical , and thermal properties of [ poly ( ethylene oxide ) -succinonitrile ]/ LiI – I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164 Kumar R, Rhee H (2012) Electrochimica Acta Effect of succinonitrile on electrical , structural , optical , and thermal properties of [ poly ( ethylene oxide ) -succinonitrile ]/ LiI – I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164
43.
go back to reference Rajendran S, Babu RS, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Memb Sci 315:67–73 Rajendran S, Babu RS, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Memb Sci 315:67–73
44.
go back to reference Shanthi M, Mathew CM, Ulaganathan M, Rajendran S (2013) FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4. Spectrochim Acta - Part A Mol Biomol Spectrosc 109:105–109 Shanthi M, Mathew CM, Ulaganathan M, Rajendran S (2013) FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4. Spectrochim Acta - Part A Mol Biomol Spectrosc 109:105–109
45.
go back to reference Das S, Prathapa SJ, Menezes P V et al (2009) Study of ion transport in Lithium perchlorate-Succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ Cryo-crystallography. 5025–5031 Das S, Prathapa SJ, Menezes P V et al (2009) Study of ion transport in Lithium perchlorate-Succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ Cryo-crystallography. 5025–5031
46.
go back to reference Jeong S-K, Jo Y-K, Jo N-J (2006) Decoupled ion conduction mechanism of poly(vinyl alcohol) based mg-conducting solid polymer electrolyte. Electrochim Acta 52:1549–1555 Jeong S-K, Jo Y-K, Jo N-J (2006) Decoupled ion conduction mechanism of poly(vinyl alcohol) based mg-conducting solid polymer electrolyte. Electrochim Acta 52:1549–1555
47.
go back to reference Sim LN, Yahya R, Arof AK (2016) Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide and urea as deep eutectic solvent. Opt Mater (Amst) 56:140–144 Sim LN, Yahya R, Arof AK (2016) Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide and urea as deep eutectic solvent. Opt Mater (Amst) 56:140–144
48.
go back to reference Nakano Y, Tsutsumi H (2014) Ionic conductive properties of solid polymer electrolyte based on poly(oxetane) with branched side chains of terminal nitrile groups. Solid State Ionics 262:774–777 Nakano Y, Tsutsumi H (2014) Ionic conductive properties of solid polymer electrolyte based on poly(oxetane) with branched side chains of terminal nitrile groups. Solid State Ionics 262:774–777
49.
go back to reference Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867PubMed Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867PubMed
50.
go back to reference Gupta H, Shalu BL et al (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309:192–199 Gupta H, Shalu BL et al (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309:192–199
Metadata
Title
Magnesium (II) bis(trifluoromethanesulfonimide) doped PVdC-co-AN gel polymer electrolytes for rechargeable batteries
Authors
D. Hambali
Z. Osman
L. Othman
K. B. Md Isa
N. Harudin
Publication date
01-06-2020
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2020
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02083-8

Other articles of this Issue 6/2020

Journal of Polymer Research 6/2020 Go to the issue

Premium Partners