Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Magnetic Recording

Author : Alberto P. Guimarães

Published in: Principles of Nanomagnetism

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic storage is the most important technology for data recording and has progressed very rapidly in the last half century. Although it has reached a high level of refinement, it is still evolving and experimenting new proposals. Random access magnetic memories have been developed or proposed, using the magnetization states of magnetic nanodisks and nanorings; other solutions include the encoding of information onto a string of magnetic domains, or of skyrmions, in magnetic strips and nanowires. This chapter describes the main concepts behind magnetic recording, aspects of the evolution of the recording technologies, and the current challenges faced by this field to continue its capacity expansion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, M. Krounbi, Spin-transfer torque magnetic random access memory (STT-MRAM). J. Emerg. Technol. Comput. Syst. 9(2), 13 (2013)CrossRef D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, M. Krounbi, Spin-transfer torque magnetic random access memory (STT-MRAM). J. Emerg. Technol. Comput. Syst. 9(2), 13 (2013)CrossRef
2.
go back to reference H.N. Bertram, Theory of Magnetic Recording (Cambridge University Press, Cambridge, 1994)CrossRef H.N. Bertram, Theory of Magnetic Recording (Cambridge University Press, Cambridge, 1994)CrossRef
3.
go back to reference B. Bhushan, Tribology and mechanics of magnetic storage devices, 2nd edn. (Springer, New York, 1996)CrossRef B. Bhushan, Tribology and mechanics of magnetic storage devices, 2nd edn. (Springer, New York, 1996)CrossRef
4.
go back to reference S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Current controlled random-access memory based on magnetic vortex handedness. Appl. Phys. Lett. 93, 142508–3 (2008)ADSCrossRef S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Current controlled random-access memory based on magnetic vortex handedness. Appl. Phys. Lett. 93, 142508–3 (2008)ADSCrossRef
5.
go back to reference G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)CrossRef G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)CrossRef
6.
go back to reference C. Chappert, A. Fert, F. Nguyen Van Dau, The emergence of spin electronics in data storage. Nat. Mat. 6, 813–823 (2007)CrossRef C. Chappert, A. Fert, F. Nguyen Van Dau, The emergence of spin electronics in data storage. Nat. Mat. 6, 813–823 (2007)CrossRef
7.
go back to reference W.H. Doyle. Magnetic recording technologies: Future technologies. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 539–548. Elsevier, Amsterdam, 2 edition, 2005 W.H. Doyle. Magnetic recording technologies: Future technologies. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 539–548. Elsevier, Amsterdam, 2 edition, 2005
8.
go back to reference A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nano. 8, 152–156 (2013)CrossRef A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nano. 8, 152–156 (2013)CrossRef
9.
go back to reference P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, Nanostructures for spin electronics, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 403–460CrossRef P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, Nanostructures for spin electronics, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 403–460CrossRef
10.
go back to reference A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998) A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)
11.
go back to reference G. Han, V. Ko, Z. Guo, H. Meng, Read sensors for greater than 1 Tb/in\(^2\), in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 127–143 G. Han, V. Ko, Z. Guo, H. Meng, Read sensors for greater than 1 Tb/in\(^2\), in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 127–143
12.
go back to reference X.F. Han, Z.C. Wen, H.X. Wei, Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching. J. Appl. Phys. 103, 07E933–9 (2008)CrossRef X.F. Han, Z.C. Wen, H.X. Wei, Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching. J. Appl. Phys. 103, 07E933–9 (2008)CrossRef
13.
go back to reference G. Ju, W. Challener, Y. Peng, M. Seigler, E. Gage, Heat-assisted magnetic recording, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 193–222 G. Ju, W. Challener, Y. Peng, M. Seigler, E. Gage, Heat-assisted magnetic recording, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 193–222
14.
go back to reference T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Antiferromagnetic spintronics. Nat. Nano. 11, 231–241 (2016)CrossRef T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Antiferromagnetic spintronics. Nat. Nano. 11, 231–241 (2016)CrossRef
15.
go back to reference O. Karlqvist, Calculation of the magnetic field in the ferromagnetic layer of a magnetic drum. Trans. Roy. Inst. Technol. Stockholm 86, 3–27 (1954)MATH O. Karlqvist, Calculation of the magnetic field in the ferromagnetic layer of a magnetic drum. Trans. Roy. Inst. Technol. Stockholm 86, 3–27 (1954)MATH
16.
go back to reference S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Revs. 100, 1777–1788 (2000)CrossRef S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Revs. 100, 1777–1788 (2000)CrossRef
17.
go back to reference A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi, Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D: Appl. Phys. 46(7), 074001 (2013) A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi, Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D: Appl. Phys. 46(7), 074001 (2013)
18.
go back to reference S.K. Kim, K.S. Lee, Y.S. Yu, Y.S. Choi, Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl. Phys. Lett. 92, 022509 (2008)ADSCrossRef S.K. Kim, K.S. Lee, Y.S. Yu, Y.S. Choi, Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl. Phys. Lett. 92, 022509 (2008)ADSCrossRef
19.
go back to reference A. Knoll, P. Bachtold, J. Bonan, G. Cherubini, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, C. Hagleitner, D. Jubin, M.A. Lantz, A. Pantazi, H. Pozidis, H. Rothuizen, A. Sebastian, R. Stutz, P. Vettiger, D. Wiesmann, E.S. Eleftheriou, Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006)CrossRef A. Knoll, P. Bachtold, J. Bonan, G. Cherubini, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, C. Hagleitner, D. Jubin, M.A. Lantz, A. Pantazi, H. Pozidis, H. Rothuizen, A. Sebastian, R. Stutz, P. Vettiger, D. Wiesmann, E.S. Eleftheriou, Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006)CrossRef
20.
go back to reference Y. Li, A.K. Menon. Magnetic recording technologies: Overview. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 627–634. Elsevier, Amsterdam, 2 edition, 2005 Y. Li, A.K. Menon. Magnetic recording technologies: Overview. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 627–634. Elsevier, Amsterdam, 2 edition, 2005
21.
go back to reference L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)ADSCrossRef L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)ADSCrossRef
22.
go back to reference J. Meena, S. Sze, U. Chand, T.-Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanosc. Res. Lett. 9, 526 (2014)ADSCrossRef J. Meena, S. Sze, U. Chand, T.-Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanosc. Res. Lett. 9, 526 (2014)ADSCrossRef
23.
go back to reference I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–194 (2011)ADSCrossRef I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–194 (2011)ADSCrossRef
24.
25.
go back to reference S.N. Piramanayagam, T.C. Chong, Developments in Data Storage (Wiley, Hoboken, 2012) S.N. Piramanayagam, T.C. Chong, Developments in Data Storage (Wiley, Hoboken, 2012)
26.
go back to reference H.J. Richter, The transition from longitudinal to perpendicular recording. J. Phys. D: Appl. Phys. 40, R149–R177 (2007)ADSCrossRef H.J. Richter, The transition from longitudinal to perpendicular recording. J. Phys. D: Appl. Phys. 40, R149–R177 (2007)ADSCrossRef
27.
go back to reference R.E. Rottmayer. Magnetic recording heads: historical perspective and background. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 572–582. Elsevier, Amsterdam, 2 edition, 2005 R.E. Rottmayer. Magnetic recording heads: historical perspective and background. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 572–582. Elsevier, Amsterdam, 2 edition, 2005
28.
go back to reference R. Sbiaa, Magnetoresistive read heads: fundamentals and functionality, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 97–126 R. Sbiaa, Magnetoresistive read heads: fundamentals and functionality, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 97–126
29.
go back to reference J. Shi, Magnetization reversal in patterned magnetic nanostructures, in Ultrathin Magnetic Structures, vol. 4, ed. by B. Heinrich, A.C. Bland (Springer, Berlin, 2005), pp. 307–331 J. Shi, Magnetization reversal in patterned magnetic nanostructures, in Ultrathin Magnetic Structures, vol. 4, ed. by B. Heinrich, A.C. Bland (Springer, Berlin, 2005), pp. 307–331
30.
go back to reference L. Shi, R. Zhao, T.C. Chong, Phase change random access memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 277–296 L. Shi, R. Zhao, T.C. Chong, Phase change random access memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 277–296
31.
go back to reference Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, N. Yoshikawa, Future options for HDD storage. IEEE Trans. Magn. 45, 3816–3822 (2009)ADSCrossRef Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, N. Yoshikawa, Future options for HDD storage. IEEE Trans. Magn. 45, 3816–3822 (2009)ADSCrossRef
32.
go back to reference J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015)ADSCrossRef J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015)ADSCrossRef
33.
go back to reference J.-U. Thiele, S. Maat, J.L. Robertson, E.E. Fullerton, Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media. IEEE Trans. Magn. 40, 2537–2542 (2004)ADSCrossRef J.-U. Thiele, S. Maat, J.L. Robertson, E.E. Fullerton, Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media. IEEE Trans. Magn. 40, 2537–2542 (2004)ADSCrossRef
34.
go back to reference T. Thomson, L. Abelman, H. Groenland, Magnetic storage: past, present and future, in Magnetic Nanostructures in Modern Technology, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini (Springer, Dordrecht, 2008), pp. 237–306CrossRef T. Thomson, L. Abelman, H. Groenland, Magnetic storage: past, present and future, in Magnetic Nanostructures in Modern Technology, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini (Springer, Dordrecht, 2008), pp. 237–306CrossRef
35.
go back to reference T. Thomson, B.D. Terris, Patterned magnetic recording media: progress and prospects, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 256–276 T. Thomson, B.D. Terris, Patterned magnetic recording media: progress and prospects, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 256–276
36.
go back to reference R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, (2014) R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, (2014)
37.
go back to reference K.L. Wang, J.G. Alzate, P. Khalili Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D. Appl. Phys. 46(7), 074003 (2013) K.L. Wang, J.G. Alzate, P. Khalili Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D. Appl. Phys. 46(7), 074003 (2013)
38.
go back to reference D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999)ADSCrossRef D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999)ADSCrossRef
39.
go back to reference R. Wood, M. Williams, A. Kavcic, J. Miles, The feasibility of magnetic recording at 10 Terabits per square inch on conventional media. IEEE Trans. Magn. 45, 917–923 (2009)ADSCrossRef R. Wood, M. Williams, A. Kavcic, J. Miles, The feasibility of magnetic recording at 10 Terabits per square inch on conventional media. IEEE Trans. Magn. 45, 917–923 (2009)ADSCrossRef
40.
go back to reference S.-H. Yang, K.-S. Ryu, S. Parkin, Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nano. 10, 221–226 (2015)CrossRef S.-H. Yang, K.-S. Ryu, S. Parkin, Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nano. 10, 221–226 (2015)CrossRef
41.
go back to reference T. Yang, A. Hirohata, L. Vila, T. Kimura, Y. Otani, Vertical stack of Co nanorings with current-perpendicular-to-plane giant magnetoresistance: Experiment and micromagnetic simulation. Phys. Rev. B. 76, 172401–172404 (2007)ADSCrossRef T. Yang, A. Hirohata, L. Vila, T. Kimura, Y. Otani, Vertical stack of Co nanorings with current-perpendicular-to-plane giant magnetoresistance: Experiment and micromagnetic simulation. Phys. Rev. B. 76, 172401–172404 (2007)ADSCrossRef
42.
go back to reference R.L. Yaozhang, S.Y.H. Lua, Nonvolatile solid-state magnetic memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 297–325 R.L. Yaozhang, S.Y.H. Lua, Nonvolatile solid-state magnetic memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 297–325
43.
go back to reference X. Zhang, G.P. Zhao, H. Fangohr, J.P. Liu, W.X. Xia, J. Xia, F.J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, (2015) X. Zhang, G.P. Zhao, H. Fangohr, J.P. Liu, W.X. Xia, J. Xia, F.J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, (2015)
44.
go back to reference Y. Zhou, M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, (2014) Y. Zhou, M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, (2014)
45.
go back to reference J.-G. Zhu, Y. Zheng, G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory. J. Appl. Phys. 87, 6668–6673 (2000)ADSCrossRef J.-G. Zhu, Y. Zheng, G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory. J. Appl. Phys. 87, 6668–6673 (2000)ADSCrossRef
46.
go back to reference J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008)ADSCrossRef J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008)ADSCrossRef
47.
go back to reference X. Zhu, J.-G. Zhu, A vertical MRAM free of write disturbance. IEEE Trans. Magn. 39, 2854–2856 (2003)ADSCrossRef X. Zhu, J.-G. Zhu, A vertical MRAM free of write disturbance. IEEE Trans. Magn. 39, 2854–2856 (2003)ADSCrossRef
Metadata
Title
Magnetic Recording
Author
Alberto P. Guimarães
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59409-5_7

Premium Partners