Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Magnetism of Small Particles

Author : Alberto P. Guimarães

Published in: Principles of Nanomagnetism

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic nanoparticles are important physical systems, relevant for many applications and, in many cases, the starting point of fundamental developments in nanomagnetism. The Stoner–Wohlfarth theory, discussed in this chapter, represents a milestone in the process of understanding nanoparticle magnetism. This theory describes the magnetic properties of ellipsoidal magnetic particles, including the conditions for the homogeneous reversal of their magnetization under applied magnetic field. Magnetic nanoparticles present spin arrangements that may be single domain, vortex state, or multidomain, with their magnetic behavior depending on the spin configuration. The critical diameters for these configurations can be derived in an approximate form. Nanoparticles in the smaller range of diameters do not behave as stable magnets, exhibiting the phenomenon of superparamagnetism .

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid. J. Appl. Phys. 82, 1281–1287 (1997)ADSCrossRef A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid. J. Appl. Phys. 82, 1281–1287 (1997)ADSCrossRef
2.
go back to reference A. Aharoni, Curling nucleation eigenvalue in a prolate spheroid. IEEE Trans. Magn. 34, 2175–2176 (1998)ADSCrossRef A. Aharoni, Curling nucleation eigenvalue in a prolate spheroid. IEEE Trans. Magn. 34, 2175–2176 (1998)ADSCrossRef
3.
go back to reference A. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 2000) A. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 2000)
4.
go back to reference P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Granular Cu–Co alloys as interacting superparamagnets. Phys. Rev. B 64, 14420-12 (2001) P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Granular Cu–Co alloys as interacting superparamagnets. Phys. Rev. B 64, 14420-12 (2001)
5.
go back to reference M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007)CrossRef M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007)CrossRef
6.
go back to reference X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35, R15–R42 (2002)ADSCrossRef X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35, R15–R42 (2002)ADSCrossRef
7.
go back to reference X. Batlle, M. García del Muro, A. Labarta, Interaction effects and energy barrier distribution on the magnetic relaxation of nanocrystalline hexagonal ferrites. Phys. Rev. B 55, 6440–6445 (1997)ADSCrossRef X. Batlle, M. García del Muro, A. Labarta, Interaction effects and energy barrier distribution on the magnetic relaxation of nanocrystalline hexagonal ferrites. Phys. Rev. B 55, 6440–6445 (1997)ADSCrossRef
8.
go back to reference X. Batlle, O. Iglesias, A. Labarta, Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8, 2761–2780 (2008) X. Batlle, O. Iglesias, A. Labarta, Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8, 2761–2780 (2008)
9.
go back to reference M. Bauer, J. Fassbender, B. Hillebrands, R.L. Stamps, Switching behavior of a Stoner particle beyond the relaxation time limit. Phys. Rev. B 61, 3410–3416 (2000)ADSCrossRef M. Bauer, J. Fassbender, B. Hillebrands, R.L. Stamps, Switching behavior of a Stoner particle beyond the relaxation time limit. Phys. Rev. B 61, 3410–3416 (2000)ADSCrossRef
10.
11.
go back to reference L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. 54B, 9353–9358 (1996)ADSCrossRef L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. 54B, 9353–9358 (1996)ADSCrossRef
12.
go back to reference G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998) G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998)
13.
go back to reference C. Binns, Medical applications of magnetic nanoparticles, in Nanomagnetism: Fundamentals and Applications, ed. by C. Binns (Elsevier, Oxford, 2014) C. Binns, Medical applications of magnetic nanoparticles, in Nanomagnetism: Fundamentals and Applications, ed. by C. Binns (Elsevier, Oxford, 2014)
14.
go back to reference F. Bödker, S. Mörup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282–285 (1994)ADSCrossRef F. Bödker, S. Mörup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282–285 (1994)ADSCrossRef
15.
go back to reference A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012)ADSCrossRef A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012)ADSCrossRef
16.
go back to reference W.F. Brown Jr., Criterion for uniform micromagnetization. Phys. Rev. 105, 1479–1482 (1957)ADSCrossRef W.F. Brown Jr., Criterion for uniform micromagnetization. Phys. Rev. 105, 1479–1482 (1957)ADSCrossRef
17.
go back to reference W.F. Brown Jr., The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968)ADSCrossRef W.F. Brown Jr., The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968)ADSCrossRef
18.
go back to reference W.F. Brown Jr., The fundamental theorem of the theory of fine ferromagnetic particles. Ann. N. Y. Acad. Sci. 147, 463–488 (1969)ADSCrossRef W.F. Brown Jr., The fundamental theorem of the theory of fine ferromagnetic particles. Ann. N. Y. Acad. Sci. 147, 463–488 (1969)ADSCrossRef
19.
go back to reference R.W. Chantrell, K. O’Grady, The magnetic properties of fine particles, in Applied Magnetism, ed. by R. Gerber, C.C. Wright, G. Asti (Kluwer Academic, Dordrecht, 1994), pp. 113–164CrossRef R.W. Chantrell, K. O’Grady, The magnetic properties of fine particles, in Applied Magnetism, ed. by R. Gerber, C.C. Wright, G. Asti (Kluwer Academic, Dordrecht, 1994), pp. 113–164CrossRef
20.
go back to reference W.T. Coffey, Y.P. Kalmykov, Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J. Appl. Phys. 112, 121301 (2012)ADSCrossRef W.T. Coffey, Y.P. Kalmykov, Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J. Appl. Phys. 112, 121301 (2012)ADSCrossRef
21.
go back to reference B.D. Cullity, C.C. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2009) B.D. Cullity, C.C. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2009)
22.
go back to reference A.B. Denison, L.J. Hope-Weeks, R.W. Meulenberg, Quantum dots, in Introduction to Nanoscale Science and Technology, ed. by M. di Ventra, S. Evoy, J.R. Heflein (Springer, New York, 2004), p. 183CrossRef A.B. Denison, L.J. Hope-Weeks, R.W. Meulenberg, Quantum dots, in Introduction to Nanoscale Science and Technology, ed. by M. di Ventra, S. Evoy, J.R. Heflein (Springer, New York, 2004), p. 183CrossRef
23.
go back to reference C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of nanomagnetism: a review. J. Phys. Condens. Matter 14, R1175–R1262 (2002)ADSCrossRef C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of nanomagnetism: a review. J. Phys. Condens. Matter 14, R1175–R1262 (2002)ADSCrossRef
24.
go back to reference J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogués, L. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Olivet, From pure superparamagnetic regime to glass collective state of magnetic moments in \(\gamma \)-Fe\(_2\)O\(_3\) nanoparticle assemblies. J. Magn. Magn. Mater. 187, L139–L144 (1998)ADSCrossRef J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogués, L. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Olivet, From pure superparamagnetic regime to glass collective state of magnetic moments in \(\gamma \)-Fe\(_2\)O\(_3\) nanoparticle assemblies. J. Magn. Magn. Mater. 187, L139–L144 (1998)ADSCrossRef
25.
go back to reference J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997) J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997)
26.
go back to reference M. El-Hilo, R.W. Chantrell, K. O’Grady, A model of interaction effects in granular magnetic solids. J. Appl. Phys. 84, 5114–5122 (1998)ADSCrossRef M. El-Hilo, R.W. Chantrell, K. O’Grady, A model of interaction effects in granular magnetic solids. J. Appl. Phys. 84, 5114–5122 (1998)ADSCrossRef
27.
go back to reference D. Fiorani (ed.), Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005)MATH D. Fiorani (ed.), Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005)MATH
28.
go back to reference E.H. Frei, S. Shtrikman, D. Treves, Critical size and nucleation field of ideal ferromagnetic particles. Phys. Rev. 106, 446–455 (1957)ADSCrossRefMATH E.H. Frei, S. Shtrikman, D. Treves, Critical size and nucleation field of ideal ferromagnetic particles. Phys. Rev. 106, 446–455 (1957)ADSCrossRefMATH
29.
go back to reference S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778–9787 (1992)ADSCrossRef S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778–9787 (1992)ADSCrossRef
30.
go back to reference J. Garcia-Otero, M. Porto, J. Rivas, Henkel plots of single-domain ferromagnetic particles. J. Appl. Phys. 87, 7376–7381 (2000)ADSCrossRef J. Garcia-Otero, M. Porto, J. Rivas, Henkel plots of single-domain ferromagnetic particles. J. Appl. Phys. 87, 7376–7381 (2000)ADSCrossRef
31.
go back to reference D. Givord, M.F. Rossignol, Coercivity, in Rare-earth Iron Permanent Magnets, ed. by J.M.D. Coey (Clarendon Press, Oxford, 1996) D. Givord, M.F. Rossignol, Coercivity, in Rare-earth Iron Permanent Magnets, ed. by J.M.D. Coey (Clarendon Press, Oxford, 1996)
32.
go back to reference Z.V. Golubenko, A.Z. Kamzin, L.P. Ol’khovik, M.M. Khvorov, Z.I. Sizova, V.P. Shabatin, Stoner–Wohlfarth-type behavior of a close-packed array od high-anisotropy hexaferrite nanoparticles. Phys. Solid State 44, 1698–1702 (2002)ADSCrossRef Z.V. Golubenko, A.Z. Kamzin, L.P. Ol’khovik, M.M. Khvorov, Z.I. Sizova, V.P. Shabatin, Stoner–Wohlfarth-type behavior of a close-packed array od high-anisotropy hexaferrite nanoparticles. Phys. Solid State 44, 1698–1702 (2002)ADSCrossRef
33.
go back to reference N.T. Gorham, R.C. Woodward, T.G. St. Pierre, B.D. Terris, S. Sun, Apparent magnetic energy-barrier distribution in FePt nanoparticles. J. Magn. Magn. Mater. 295, 174–176 (2005)ADSCrossRef N.T. Gorham, R.C. Woodward, T.G. St. Pierre, B.D. Terris, S. Sun, Apparent magnetic energy-barrier distribution in FePt nanoparticles. J. Magn. Magn. Mater. 295, 174–176 (2005)ADSCrossRef
34.
go back to reference G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite particles. J. Appl. Phys. 94, 3520–3528 (2003)ADSCrossRef G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite particles. J. Appl. Phys. 94, 3520–3528 (2003)ADSCrossRef
35.
go back to reference A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998) A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)
36.
go back to reference O. Henkel, Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollectiven. Phys. Status Solidi B 7, 919–929 (1964)ADSCrossRef O. Henkel, Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollectiven. Phys. Status Solidi B 7, 919–929 (1964)ADSCrossRef
37.
go back to reference O. Iglesias, A. Labarta, Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys. Rev. B 63, 184416-1–184416-11 (2001)ADSCrossRef O. Iglesias, A. Labarta, Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys. Rev. B 63, 184416-1–184416-11 (2001)ADSCrossRef
38.
go back to reference O. Iglesias, A. Labarta, X. Batlle, Modelling exchange bias in core/shell nanoparticles. J. Phys. Condens. Matter 19, 406232-7 (2007)CrossRef O. Iglesias, A. Labarta, X. Batlle, Modelling exchange bias in core/shell nanoparticles. J. Phys. Condens. Matter 19, 406232-7 (2007)CrossRef
39.
go back to reference I.S. Jacobs, C.P. Bean, Fine particles, thin films and exchange anisotropy (effects of finite dimensions and interfaces on the basic properties of ferromagnets), in Magnetism, vol. III, ed. by G.T. Rado, H. Suhl (Academic Press, New York, 1963), pp. 271–350 I.S. Jacobs, C.P. Bean, Fine particles, thin films and exchange anisotropy (effects of finite dimensions and interfaces on the basic properties of ferromagnets), in Magnetism, vol. III, ed. by G.T. Rado, H. Suhl (Academic Press, New York, 1963), pp. 271–350
40.
go back to reference A. Kákay, L.K. Varga, Monodomain critical radius for soft-magnetic fine particles. J. Appl. Phys. 97, 083901–083904 (2005)ADSCrossRef A. Kákay, L.K. Varga, Monodomain critical radius for soft-magnetic fine particles. J. Appl. Phys. 97, 083901–083904 (2005)ADSCrossRef
41.
go back to reference D. Kechrakos, K.N. Trohidou, Effects of dipolar interactions on the magnetic properties of granular solids. J. Magn. Magn. Mater. 177, 943–944 (1998)ADSCrossRef D. Kechrakos, K.N. Trohidou, Effects of dipolar interactions on the magnetic properties of granular solids. J. Magn. Magn. Mater. 177, 943–944 (1998)ADSCrossRef
42.
go back to reference P.E. Kelly, K. O’Grady, P.I. Mayo, R.W. Chantrell, Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. Magn. 25, 3881–3883 (1989)ADSCrossRef P.E. Kelly, K. O’Grady, P.I. Mayo, R.W. Chantrell, Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. Magn. 25, 3881–3883 (1989)ADSCrossRef
43.
go back to reference R. Kikuchi, On the minimum of magnetization reversal time. J. Appl. Phys. 27, 1352–1357 (1956)ADSCrossRef R. Kikuchi, On the minimum of magnetization reversal time. J. Appl. Phys. 27, 1352–1357 (1956)ADSCrossRef
44.
go back to reference M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836–2857 (2008) M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836–2857 (2008)
45.
go back to reference R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)ADSCrossRef R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)ADSCrossRef
46.
go back to reference E. Kondorsky, On the nature of coercive force and irreversible changes in magnetization. J. Phys. Mosc. 2, 161 (1940) E. Kondorsky, On the nature of coercive force and irreversible changes in magnetization. J. Phys. Mosc. 2, 161 (1940)
47.
go back to reference H. Kronmüller, K.D. Durst, G. Martinek, Angular dependence of the coercive field in sintered Fe\(_{77}\)Nd\(_{15}\)B\(_{8}\) magnets. J. Magn. Magn. Mater. 69, 149–157 (1987)ADSCrossRef H. Kronmüller, K.D. Durst, G. Martinek, Angular dependence of the coercive field in sintered Fe\(_{77}\)Nd\(_{15}\)B\(_{8}\) magnets. J. Magn. Magn. Mater. 69, 149–157 (1987)ADSCrossRef
48.
go back to reference A. Labarta, O. Iglesias, L. Balcells, F. Badia, Magnetic relaxation in small-particle systems: ln(t/\(\tau {}_{0}\)) scaling. Phys. Rev. B 48, 10240–10246 (1993)ADSCrossRef A. Labarta, O. Iglesias, L. Balcells, F. Badia, Magnetic relaxation in small-particle systems: ln(t/\(\tau {}_{0}\)) scaling. Phys. Rev. B 48, 10240–10246 (1993)ADSCrossRef
49.
go back to reference Z. Li, S. Zhang, Magnetization dynamics with a spin-transfer torque. Phys. Rev. B 68, 024404–024410 (2003)ADSCrossRef Z. Li, S. Zhang, Magnetization dynamics with a spin-transfer torque. Phys. Rev. B 68, 024404–024410 (2003)ADSCrossRef
50.
go back to reference F.E. Luborsky, High coercive materials - development of elongated particle magnets. J. Appl. Phys. 32, 171S–183S (1961)ADSCrossRef F.E. Luborsky, High coercive materials - development of elongated particle magnets. J. Appl. Phys. 32, 171S–183S (1961)ADSCrossRef
51.
go back to reference S.A. Majetich, Y. Jin, Magnetization directions of individual nanoparticles. Science 284, 470–473 (1999)ADSCrossRef S.A. Majetich, Y. Jin, Magnetization directions of individual nanoparticles. Science 284, 470–473 (1999)ADSCrossRef
52.
go back to reference A.S. Mathuriya, Magnetotactic bacteria for cancer therapy. Biotechnol. Lett. 37, 491–498 (2015)CrossRef A.S. Mathuriya, Magnetotactic bacteria for cancer therapy. Biotechnol. Lett. 37, 491–498 (2015)CrossRef
53.
go back to reference S. Mörup, M.F. Hansen, Superparamagnetic particles, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 2159–2176 S. Mörup, M.F. Hansen, Superparamagnetic particles, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 2159–2176
54.
go back to reference A.R. Muxworthy, W. Williams, Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J. R. Soc. Interface 41, 1207–1212 (2009)CrossRef A.R. Muxworthy, W. Williams, Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J. R. Soc. Interface 41, 1207–1212 (2009)CrossRef
55.
go back to reference T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)ADSCrossRef T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)ADSCrossRef
56.
go back to reference J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)ADSCrossRef J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)ADSCrossRef
57.
go back to reference Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)ADSCrossRef Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)ADSCrossRef
58.
59.
go back to reference C.R. Pike, A.P. Roberts, K.L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660–6667 (1999)ADSCrossRef C.R. Pike, A.P. Roberts, K.L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660–6667 (1999)ADSCrossRef
60.
go back to reference N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17(11), 3044–3049 (2005)CrossRef N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17(11), 3044–3049 (2005)CrossRef
61.
go back to reference B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, C.A. Ramos, A.P. Guimarães, FMR evidence of finite-size effects in CoCu granular alloys. Phys. Rev. B 67, 024402–024406 (2003)ADSCrossRef B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, C.A. Ramos, A.P. Guimarães, FMR evidence of finite-size effects in CoCu granular alloys. Phys. Rev. B 67, 024402–024406 (2003)ADSCrossRef
62.
go back to reference A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res.: Solid. Earth 105(B12), 28461–28475 (2000) A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res.: Solid. Earth 105(B12), 28461–28475 (2000)
63.
go back to reference S. Shtrikman, E.P. Wohlfarth, The theory of the Vogel–Fulcher law of spin glasses. Phys. Lett. A 85, 467 (1981)ADSCrossRef S. Shtrikman, E.P. Wohlfarth, The theory of the Vogel–Fulcher law of spin glasses. Phys. Lett. A 85, 467 (1981)ADSCrossRef
64.
go back to reference R. Skomski, J. Zhou, Nanomagnetic models, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 41–90CrossRef R. Skomski, J. Zhou, Nanomagnetic models, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 41–90CrossRef
65.
go back to reference J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)ADSCrossRef J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)ADSCrossRef
66.
go back to reference J. Stöhr, H.C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006) J. Stöhr, H.C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006)
67.
go back to reference E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A240, 599–642 (1948). Reprinted in IEEE Trans. Magn. 27(1991), 3475–3518 E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A240, 599–642 (1948). Reprinted in IEEE Trans. Magn. 27(1991), 3475–3518
68.
go back to reference Z.Z. Sun, X.R. Wang, Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles. Phys. Rev. Lett. 97:077205–1–077205–4 (2006) Z.Z. Sun, X.R. Wang, Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles. Phys. Rev. Lett. 97:077205–1–077205–4 (2006)
69.
go back to reference C. Tannous, J. Gieraltowski, The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys. 29, 475–487 (2008)CrossRef C. Tannous, J. Gieraltowski, The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys. 29, 475–487 (2008)CrossRef
70.
go back to reference S. Thamm, J. Hesse, A simple plot indicating interactions between single-domain particles. J. Magn. Magn. Mater. 154, 254–262 (1996)ADSCrossRef S. Thamm, J. Hesse, A simple plot indicating interactions between single-domain particles. J. Magn. Magn. Mater. 154, 254–262 (1996)ADSCrossRef
71.
go back to reference S. Thamm, J. Hesse, The remanence of a Stoner–Wohlfarth particle ensemble as function of a demagnetization process. J. Magn. Magn. Mater. 184, 245–255 (1998)ADSCrossRef S. Thamm, J. Hesse, The remanence of a Stoner–Wohlfarth particle ensemble as function of a demagnetization process. J. Magn. Magn. Mater. 184, 245–255 (1998)ADSCrossRef
72.
go back to reference A. Thiaville, Coherent rotation of magnetization in three dimensions: a geometrical approach. Phys. Rev. B 61, 12221–12232 (2000)ADSCrossRef A. Thiaville, Coherent rotation of magnetization in three dimensions: a geometrical approach. Phys. Rev. B 61, 12221–12232 (2000)ADSCrossRef
73.
go back to reference C. Thirion, W. Wernsdorfer, M. Jamet, V. Dupuis, P. Mélinon, A. Pérez, D. Mailly, Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles. J. Magn. Magn. Mater. 242–245, 993–995 (2002)CrossRef C. Thirion, W. Wernsdorfer, M. Jamet, V. Dupuis, P. Mélinon, A. Pérez, D. Mailly, Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles. J. Magn. Magn. Mater. 242–245, 993–995 (2002)CrossRef
74.
go back to reference J.K. Vassiliou, V. Mehrotra, M.W. Russell, E.P. Giannelis, R.D. McMichael, R.D. Shull, R.F. Ziolo, Magnetic and optical properties of \(\gamma \)-Fe\(_2\)O\(_3\) nanocrystals. J. Appl. Phys. 73, 5109–5116 (1993)ADSCrossRef J.K. Vassiliou, V. Mehrotra, M.W. Russell, E.P. Giannelis, R.D. McMichael, R.D. Shull, R.F. Ziolo, Magnetic and optical properties of \(\gamma \)-Fe\(_2\)O\(_3\) nanocrystals. J. Appl. Phys. 73, 5109–5116 (1993)ADSCrossRef
75.
go back to reference W. Weber, S. Riesen, H.C. Siegmann, Magnetization precession by hot spin injection. Science 291, 1015–1018 (2001)ADSCrossRef W. Weber, S. Riesen, H.C. Siegmann, Magnetization precession by hot spin injection. Science 291, 1015–1018 (2001)ADSCrossRef
76.
go back to reference W. Wernsdorfer, Molecular nanomagnets, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2005), pp. 147–181 W. Wernsdorfer, Molecular nanomagnets, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2005), pp. 147–181
77.
go back to reference W. Wernsdorfer, E. Bonet Orozco, B. Barbara, K. Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J.E. Wegrowe, J-Ph Ansermet, N. Demoncy, H. Pascard, N. Demoncy, A. Loiseau, L. François, N. Duxin, M.P. Pileni, Mesoscopic effects in magnetism: Submicron to nanometer size single particle. J. Appl. Phys. 81, 5543–5545 (1997)ADSCrossRef W. Wernsdorfer, E. Bonet Orozco, B. Barbara, K. Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J.E. Wegrowe, J-Ph Ansermet, N. Demoncy, H. Pascard, N. Demoncy, A. Loiseau, L. François, N. Duxin, M.P. Pileni, Mesoscopic effects in magnetism: Submicron to nanometer size single particle. J. Appl. Phys. 81, 5543–5545 (1997)ADSCrossRef
78.
go back to reference E.P. Wohlfarth, Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29, 595–596 (1958)ADSCrossRef E.P. Wohlfarth, Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29, 595–596 (1958)ADSCrossRef
79.
go back to reference E.P. Wohlfarth, Fine particle magnetism, in Magnetic Properties of Low-Dimensional Systems, ed. by L. Falicov, J. Moran-Lopez (Springer, Berlin, 1986) E.P. Wohlfarth, Fine particle magnetism, in Magnetic Properties of Low-Dimensional Systems, ed. by L. Falicov, J. Moran-Lopez (Springer, Berlin, 1986)
80.
go back to reference Q.F. Xiao, B.C. Choi, J. Rudge, Y.K. Hong, G. Donohoe, Effect of a magnetic field pulse on ultrafast magnetization reversal in a submicron elliptical Permalloy thin film. J. Appl. Phys. 101, 24306–24306 (2007)CrossRef Q.F. Xiao, B.C. Choi, J. Rudge, Y.K. Hong, G. Donohoe, Effect of a magnetic field pulse on ultrafast magnetization reversal in a submicron elliptical Permalloy thin film. J. Appl. Phys. 101, 24306–24306 (2007)CrossRef
81.
go back to reference J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008)ADSCrossRef J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008)ADSCrossRef
82.
go back to reference J.G. Zhu, Magnetization reversal dynamics, in Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn., ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2005), pp. 754–760 J.G. Zhu, Magnetization reversal dynamics, in Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn., ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2005), pp. 754–760
Metadata
Title
Magnetism of Small Particles
Author
Alberto P. Guimarães
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59409-5_3

Premium Partners