Skip to main content
Top

2021 | OriginalPaper | Chapter

Magnetohydrodynamics Adaptive Solvers in the AMROC Framework for Space Plasma Applications

Authors : Müller Moreira Lopes, Margarete Oliveira Domingues, Ralf Deiterding, Odim Mendes

Published in: Cartesian CFD Methods for Complex Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plasma disturbances affect satellites and spacecraft and can cause serious problems to telecommunications and sensitive sensor systems on Earth. Considering the huge scale of the plasma phenomena, data collection at individual locations is not sufficient to cover this entire relevant environment. Therefore, computational plasma modelling has become a significant issue for space sciences, particularly for the near-Earth magnetosphere. However, the simulations of these disturbances present many physical as well as numerical and computational challenges. In this work, we discuss our recent magnetohydrodynamic solver, realised within the MPI-parallel AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework, in which particular physical models and automatic mesh generation procedures have been implemented. A performance analysis using a selection of significant space applications validates the solvers capabilities and confirms the technical importance of our approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ahrens, J., Geveci, B., Law, C.: ParaView. Los Alamos National Laboratory, Los Alamos (2005) Ahrens, J., Geveci, B., Law, C.: ParaView. Los Alamos National Laboratory, Los Alamos (2005)
2.
go back to reference Bell, J., Berger, M.J., Saltzmann, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)MathSciNetCrossRef Bell, J., Berger, M.J., Saltzmann, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)MathSciNetCrossRef
3.
go back to reference Berger, M.J.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Stanford University, Stanford (1982) Berger, M.J.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. Thesis, Stanford University, Stanford (1982)
4.
go back to reference Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)CrossRef Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)CrossRef
5.
go back to reference Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetCrossRef Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetCrossRef
6.
go back to reference Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)CrossRef Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)CrossRef
7.
go back to reference Brackbill, J.U., Barnes, D.C.: The effect of nonzero ∇⋅ B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)MathSciNetCrossRef Brackbill, J.U., Barnes, D.C.: The effect of nonzero ∇⋅ B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)MathSciNetCrossRef
8.
go back to reference Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Nature 126(3169), 129–130 (1930)CrossRef Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Nature 126(3169), 129–130 (1930)CrossRef
9.
go back to reference Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 171–186 (1931)CrossRef Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 171–186 (1931)CrossRef
10.
go back to reference Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for visualizing and analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High Performance Visualization–Enabling Extreme-Scale Scientific Insight, 1st edn., Chapter 16, pp. 357–372. Chapman and Hall/CRC, New York (2012) Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for visualizing and analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High Performance Visualization–Enabling Extreme-Scale Scientific Insight, 1st edn., Chapter 16, pp. 357–372. Chapman and Hall/CRC, New York (2012)
11.
go back to reference Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis, vol. VII. Elsevier, Amsterdam (2000) Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis, vol. VII. Elsevier, Amsterdam (2000)
12.
go back to reference Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)MathSciNetCrossRef Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)MathSciNetCrossRef
13.
go back to reference Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D. Thesis, Brandenburgische Technische Universität Cottbus (2003) Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D. Thesis, Brandenburgische Technische Universität Cottbus (2003)
14.
go back to reference Deiterding, R.: Construction and application of an AMR algorithm for distributed memory computers. In: Plewa, T., Linde, T., Weirs, V.G. (eds.), Adaptive Mesh Refinement – Theory and Applications, pp. 361–372. Springer, Berlin (2005)CrossRef Deiterding, R.: Construction and application of an AMR algorithm for distributed memory computers. In: Plewa, T., Linde, T., Weirs, V.G. (eds.), Adaptive Mesh Refinement – Theory and Applications, pp. 361–372. Springer, Berlin (2005)CrossRef
15.
go back to reference Deiterding, R.: Block-structured adaptive mesh refinement – theory, implementation and application. ESAIM: Proc. 34, 97–150 (2011)MathSciNetCrossRef Deiterding, R.: Block-structured adaptive mesh refinement – theory, implementation and application. ESAIM: Proc. 34, 97–150 (2011)MathSciNetCrossRef
16.
go back to reference Deiterding, R., Domingues, M.O.: Evaluation of multiresolution mesh adaptation criteria in the AMROC framework. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, vol. 111. Civil Comp Press (2017) Deiterding, R., Domingues, M.O.: Evaluation of multiresolution mesh adaptation criteria in the AMROC framework. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, vol. 111. Civil Comp Press (2017)
17.
go back to reference Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement: a case study for 2D Euler equations. ESAIM Proc. 29, 28–42 (2009)MathSciNetCrossRef Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement: a case study for 2D Euler equations. ESAIM Proc. 29, 28–42 (2009)MathSciNetCrossRef
18.
go back to reference Deiterding, R., Domingues, M.O., Schneider, K.: Multiresolution analysis as a criterion for effective dynamic mesh adaptation – a case study for Euler equations in the SAMR framework AMROC. Comput. Fluids 205, 104583 (2020)MathSciNetCrossRef Deiterding, R., Domingues, M.O., Schneider, K.: Multiresolution analysis as a criterion for effective dynamic mesh adaptation – a case study for Euler equations in the SAMR framework AMROC. Comput. Fluids 205, 104583 (2020)MathSciNetCrossRef
19.
go back to reference Domingues, M.O., Deiterding, R., Moreira Lopes, M., Gomes, A.K.F., Mendes, O., Schneider, K.: Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework. Comput. Fluids 190, 374–381 (2019)MathSciNetCrossRef Domingues, M.O., Deiterding, R., Moreira Lopes, M., Gomes, A.K.F., Mendes, O., Schneider, K.: Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework. Comput. Fluids 190, 374–381 (2019)MathSciNetCrossRef
20.
go back to reference Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011)MathSciNetCrossRef Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011)MathSciNetCrossRef
21.
go back to reference Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.A., Gibbs, M., Burnett, C.: The economic impact of space weather: where do we stand? Risk Anal. 37(2) (2017) Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.A., Gibbs, M., Burnett, C.: The economic impact of space weather: where do we stand? Risk Anal. 37(2) (2017)
22.
go back to reference Feng, X.: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Springer, Singapore (2020)CrossRef Feng, X.: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Springer, Singapore (2020)CrossRef
23.
go back to reference Fromang, S., Hennebelle, P., Teyssier, R.: A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical MHD. Astron. Astrophys. 457(2), 371–384 (2006)CrossRef Fromang, S., Hennebelle, P., Teyssier, R.: A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical MHD. Astron. Astrophys. 457(2), 371–384 (2006)CrossRef
26.
go back to reference Hargreaves, J.K.: The Solar-Terrestrial Environment. Cambridge University Press, Cambridge (1992)CrossRef Hargreaves, J.K.: The Solar-Terrestrial Environment. Cambridge University Press, Cambridge (1992)CrossRef
27.
go back to reference Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)MathSciNetCrossRef Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)MathSciNetCrossRef
28.
go back to reference Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetCrossRef Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetCrossRef
29.
go back to reference Hopkins, P.F.: A constrained-gradient method to control divergence errors in numerical MHD. Mon. Not. R. Astron. Soc. 462, 576–587 (2016)CrossRef Hopkins, P.F.: A constrained-gradient method to control divergence errors in numerical MHD. Mon. Not. R. Astron. Soc. 462, 576–587 (2016)CrossRef
30.
go back to reference Jiang, R.-L., Fang, C., Chen, P.-F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics. Comput. Phys. Commun. 183(8), 1617–1633 (2012)CrossRef Jiang, R.-L., Fang, C., Chen, P.-F.: A new MHD code with adaptive mesh refinement and parallelization for astrophysics. Comput. Phys. Commun. 183(8), 1617–1633 (2012)CrossRef
31.
go back to reference Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil, C.B., Koren, B. (eds.), Numerical Methods for Advection-Diffusion Problems. Notes on Numerical Fluid Mechanics, pp. 117–138. Vieweg, Germany (1993) Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil, C.B., Koren, B. (eds.), Numerical Methods for Advection-Diffusion Problems. Notes on Numerical Fluid Mechanics, pp. 117–138. Vieweg, Germany (1993)
32.
go back to reference Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, vol. 8. Course of Theoretical Physics S, Pergamon, 2nd edn. (2004) Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, vol. 8. Course of Theoretical Physics S, Pergamon, 2nd edn. (2004)
33.
go back to reference LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1990)CrossRef LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1990)CrossRef
34.
go back to reference Mignone, A., Tzeferacos, P., Bodo, G.: High-order conservative finite difference GLM–MHD schemes for cell-centered MHD. J. Comput. Phys. 229(17), 5896–5920 (2010)MathSciNetCrossRef Mignone, A., Tzeferacos, P., Bodo, G.: High-order conservative finite difference GLM–MHD schemes for cell-centered MHD. J. Comput. Phys. 229(17), 5896–5920 (2010)MathSciNetCrossRef
35.
go back to reference Miyoshi, T., Kusano, K.A.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005)MathSciNetCrossRef Miyoshi, T., Kusano, K.A.: A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208, 315–344 (2005)MathSciNetCrossRef
36.
go back to reference Moreira Lopes, M., Deiterding, R., Gomes, A.K.F., Mendes, O., Domingues, M.: An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement. Comput. Fluids 173, 293–298 (2018)MathSciNetCrossRef Moreira Lopes, M., Deiterding, R., Gomes, A.K.F., Mendes, O., Domingues, M.: An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement. Comput. Fluids 173, 293–298 (2018)MathSciNetCrossRef
37.
go back to reference Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, vol. 27. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2003) Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, vol. 27. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2003)
38.
go back to reference Ogino, T.: A Three-Dimensional MHD simulation of the interaction of the Solar Wind with the Earth’s Magnetosphere: the generation of field-aligned currents. J. Geophys. Res. 91(A6), 6791–6806 (1986)CrossRef Ogino, T.: A Three-Dimensional MHD simulation of the interaction of the Solar Wind with the Earth’s Magnetosphere: the generation of field-aligned currents. J. Geophys. Res. 91(A6), 6791–6806 (1986)CrossRef
39.
go back to reference Ogino, T.: Two-dimensional MHD code. In: Omura, Y., Matsumoto, H. (ed.), Computer Space Plasma Physics: Simulations and Software, pp. 161–191. Terra Scientific Publishing, Tokyo (1993) Ogino, T.: Two-dimensional MHD code. In: Omura, Y., Matsumoto, H. (ed.), Computer Space Plasma Physics: Simulations and Software, pp. 161–191. Terra Scientific Publishing, Tokyo (1993)
40.
go back to reference Ogino, T., Walker, R.J., Ashour-Abdalla, M.: A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Trans. Plasma Sci. 20(6), 817–828 (1992)CrossRef Ogino, T., Walker, R.J., Ashour-Abdalla, M.: A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Trans. Plasma Sci. 20(6), 817–828 (1992)CrossRef
41.
42.
go back to reference Russell, C.T., Luhmann, J.G., Strangeway, R.J.: Space Physics: An Introduction. Cambridge University Press, Cambridge (2016) Russell, C.T., Luhmann, J.G., Strangeway, R.J.: Space Physics: An Introduction. Cambridge University Press, Cambridge (2016)
43.
go back to reference Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D., Obara, T., O’Brien, T.P., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E., Vilmer, N.: Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745–2807 (2015) Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D., Obara, T., O’Brien, T.P., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E., Vilmer, N.: Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745–2807 (2015)
44.
go back to reference Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008)CrossRef Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137–177 (2008)CrossRef
45.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)CrossRef Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)CrossRef
46.
go back to reference Tóth, G.: The ∇⋅ B constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)MathSciNetCrossRef Tóth, G.: The ∇⋅ B constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)MathSciNetCrossRef
47.
go back to reference Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.: Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903 (2012)MathSciNetCrossRef Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.: Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903 (2012)MathSciNetCrossRef
48.
go back to reference van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)MATH van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)MATH
49.
go back to reference van Leer, B.: Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23(3), 263–275 (1977)MATH van Leer, B.: Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23(3), 263–275 (1977)MATH
50.
go back to reference van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)MATH van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)MATH
51.
go back to reference van Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. In: Hussaini, M.Y., van Leer, B., van Rosendale, J. (eds.), Upwind and High-Resolution Schemes, pp. 95–103. Springer, Berlin (1997)CrossRef van Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. In: Hussaini, M.Y., van Leer, B., van Rosendale, J. (eds.), Upwind and High-Resolution Schemes, pp. 95–103. Springer, Berlin (1997)CrossRef
Metadata
Title
Magnetohydrodynamics Adaptive Solvers in the AMROC Framework for Space Plasma Applications
Authors
Müller Moreira Lopes
Margarete Oliveira Domingues
Ralf Deiterding
Odim Mendes
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-61761-5_5

Premium Partner