Skip to main content
Top
Published in: Environmental Earth Sciences 11/2021

01-06-2021 | Original Article

Major ion chemistry in the headwater region of the Yellow River: impact of land covers

Authors: Su Yuanrong, Yu Ruihong, Tian Mingyang, Yang Xiankun, Ran Lishan, Hu Haizhu, Zhang Zhuangzhuang, Lu Xixi

Published in: Environmental Earth Sciences | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Research on the ionic chemistry of rivers and weathering types provides the basis for elucidating the dynamics of river chemistry and exploring carbon cycling in river systems. There is a lack of water chemistry study in the river systems in the Tibet Plateau, especially in the streams/rivers flowing from and through glaciers and permafrost. Samples in the rivers flowing through different land covers (lakes, glaciers, permafrost, grasslands, peatlands) were collected in different months (April, June, August and October) in 2016, covering various hydrological regimes. The temporal and spatial dynamic variations of major ions and the underlying causes were explored. The results revealed that in the headwater region Ca2+ and HCO3 were the dominant ions, derived primarily from the dissolution of carbonatites and evaporates. However, the concentrations of ions from different land covers were vastly different.The high concentrations of Na+ and K+ in the lakes sample were mainly affected by evaporation and precipitation. The acid deposition caused by atmospheric pollutants resulted in high concentration of SO42− in glacial and permafrost streams. K+ concentration was high in the grassland region with frequent agricultural activities such as the planting and fertilization of highland barleys that applied nitrogen and potassium fertilizers. Although Total Dissolved Load (TDS) was higher for the lakes and streams/rivers from glaciers and permafrost, and its average (287.28 ± 40 mg/L) over the headwater region was lower than that in the middle and lower reaches of the Yellow River because of low temperature. The current study provided the basis of and reference for the overall water chemistry characteristics and carbon cycling processes of the entire Yellow River.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Balagizi CM, Darchambeau F, Bouillon S et al (2015) River geochemistry, chemical weathering, and atmospheric CO2, consumption rates in the Virunga Volcanic Province (East Africa)[J]. Geochem Geophys Geosyst 16(8):2637–2660CrossRef Balagizi CM, Darchambeau F, Bouillon S et al (2015) River geochemistry, chemical weathering, and atmospheric CO2, consumption rates in the Virunga Volcanic Province (East Africa)[J]. Geochem Geophys Geosyst 16(8):2637–2660CrossRef
go back to reference Barth JAC, Cronin AA, Dunlop J et al (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland)[J]. Chem Geol 200(3):203–216CrossRef Barth JAC, Cronin AA, Dunlop J et al (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland)[J]. Chem Geol 200(3):203–216CrossRef
go back to reference Biggs TW, Dunne T, Ferreira Domingues T et al (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin[J]. Water Resour Res 38(8):288–288CrossRef Biggs TW, Dunne T, Ferreira Domingues T et al (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin[J]. Water Resour Res 38(8):288–288CrossRef
go back to reference Cao WG, Yang HF, Liu CL et al (2018) Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China[J]. Geosci Frontiers 9(3):907–916CrossRef Cao WG, Yang HF, Liu CL et al (2018) Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China[J]. Geosci Frontiers 9(3):907–916CrossRef
go back to reference Chen J, Wang F, Meybeck, et al. (2005) Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin[J]. Global Biogeochem Cycles 19(3). Chen J, Wang F, Meybeck, et al. (2005) Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin[J]. Global Biogeochem Cycles 19(3).
go back to reference Cortes JE, Muñoz LF, Gonzalez CA, Niño JE, Polo A, Suspes A, Si Achoque SC (2016) Hydrogeochemistry of the formation waters in the San Franciscofield, UMV basin, Colombia—a multivariate statistical approach. J Hydrol 539:113–124CrossRef Cortes JE, Muñoz LF, Gonzalez CA, Niño JE, Polo A, Suspes A, Si Achoque SC (2016) Hydrogeochemistry of the formation waters in the San Franciscofield, UMV basin, Colombia—a multivariate statistical approach. J Hydrol 539:113–124CrossRef
go back to reference Dai D, Zhang Y, Han XJ et al (2015) Impact of sewage discharge in Taihu Basin on the water chemistry of Lake Taihu[J]. Acta Scient Circumst 35(10):3121–3130 Dai D, Zhang Y, Han XJ et al (2015) Impact of sewage discharge in Taihu Basin on the water chemistry of Lake Taihu[J]. Acta Scient Circumst 35(10):3121–3130
go back to reference Degens ET (1989) Perspectives on biogeochemistry[M]. Perspectives on biogeochemistry. SpringerCrossRef Degens ET (1989) Perspectives on biogeochemistry[M]. Perspectives on biogeochemistry. SpringerCrossRef
go back to reference Degens ET, Weibin G, Kempe S (1982) Transport of Carbon and Minerals in Major World Rivers Pt.2. A Workshop Arranged by Scientific Committee on Problems of the Environment Humburg University. Degens ET, Weibin G, Kempe S (1982) Transport of Carbon and Minerals in Major World Rivers Pt.2. A Workshop Arranged by Scientific Committee on Problems of the Environment Humburg University.
go back to reference Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2, consumption rates deduced from the chemistry of large rivers[J]. Chem Geol 159(1–4):3–30CrossRef Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2, consumption rates deduced from the chemistry of large rivers[J]. Chem Geol 159(1–4):3–30CrossRef
go back to reference Galy A, France-Lanord C (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chem Geol 159(1–4):31–60CrossRef Galy A, France-Lanord C (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chem Geol 159(1–4):31–60CrossRef
go back to reference Gibbs RJ (1970) Mechanisms controlling world water chemistry[J]. Science 170(3962):1088–1090CrossRef Gibbs RJ (1970) Mechanisms controlling world water chemistry[J]. Science 170(3962):1088–1090CrossRef
go back to reference Guang-Yin H, Zhi-Bao D, Jun-Feng L, et al. (2012) Driving forces of land use and land cover change (LUCC) in the Zoige Wetland, Qinghai-Tibetan Plateau[J]. Sci Cold Arid Regions. Guang-Yin H, Zhi-Bao D, Jun-Feng L, et al. (2012) Driving forces of land use and land cover change (LUCC) in the Zoige Wetland, Qinghai-Tibetan Plateau[J]. Sci Cold Arid Regions.
go back to reference Han YM, Shen ZX et al (2009) Seasonal variations of water-slouch inorganic ions in atmospheric participlesover Xi’an[J]. Environ Chem 28(2):261–266 Han YM, Shen ZX et al (2009) Seasonal variations of water-slouch inorganic ions in atmospheric participlesover Xi’an[J]. Environ Chem 28(2):261–266
go back to reference Hu M, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers[J]. Nature 298(5874):550–553CrossRef Hu M, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers[J]. Nature 298(5874):550–553CrossRef
go back to reference Hunt CW, Salisbury JE, Vandemark D (2011) Contribution of non-carbonate anions to river alkalinity and overestimation of pCO2[J]. Biogeosci Discus 8(8):5159–5177 Hunt CW, Salisbury JE, Vandemark D (2011) Contribution of non-carbonate anions to river alkalinity and overestimation of pCO2[J]. Biogeosci Discus 8(8):5159–5177
go back to reference Iqbal J, Nazzal Y, Howari F, Xavier C (2018) Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: the case of Liwa aquifer, Abu Dhabi, United Arab Emirates[J]. Groundw Sustain Dev 7:212–219CrossRef Iqbal J, Nazzal Y, Howari F, Xavier C (2018) Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: the case of Liwa aquifer, Abu Dhabi, United Arab Emirates[J]. Groundw Sustain Dev 7:212–219CrossRef
go back to reference Jacobson AD, Blum JD (2003) Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps[J]. Geology 31(10):865–868CrossRef Jacobson AD, Blum JD (2003) Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps[J]. Geology 31(10):865–868CrossRef
go back to reference Jarvie HP, Neal C, Leach DV et al (1997) Major ion concentrations and the inorganic carbon chemistry of the Humber rivers[J]. Sci Total Environ 194–195:285–302CrossRef Jarvie HP, Neal C, Leach DV et al (1997) Major ion concentrations and the inorganic carbon chemistry of the Humber rivers[J]. Sci Total Environ 194–195:285–302CrossRef
go back to reference Jing Z, Wei WH, Min GL et al (1990) Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang)[J]. J Geophys Res Oceans 95(C8):13277–13288CrossRef Jing Z, Wei WH, Min GL et al (1990) Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang)[J]. J Geophys Res Oceans 95(C8):13277–13288CrossRef
go back to reference Li S, Zhang Q (2009) Geochemistry of the upper Han River basin, China: 2: seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load[J]. J Hazard Mater 170(2–3):605–611CrossRef Li S, Zhang Q (2009) Geochemistry of the upper Han River basin, China: 2: seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load[J]. J Hazard Mater 170(2–3):605–611CrossRef
go back to reference Li ZJ, Song LL et al (2017) The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015[J]. Atmos Environ 156:61–69CrossRef Li ZJ, Song LL et al (2017) The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015[J]. Atmos Environ 156:61–69CrossRef
go back to reference Liang W, Zhang L, Cai WJ et al (2016) Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: the Qinghai-Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River[J]. Chem Geol 430:34–44CrossRef Liang W, Zhang L, Cai WJ et al (2016) Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: the Qinghai-Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River[J]. Chem Geol 430:34–44CrossRef
go back to reference Meybeck M (1976) Total minerals dissolved transport by world major rivers/transport en sels dissous des plus grands fleuves mondiaux[M]. Internat Assoc Scient Hydrol Bull 21(2):265–284 Meybeck M (1976) Total minerals dissolved transport by world major rivers/transport en sels dissous des plus grands fleuves mondiaux[M]. Internat Assoc Scient Hydrol Bull 21(2):265–284
go back to reference Meybeck M et al (2003) Global occurrence of major elements in rivers[J]. Treatise Geochem 5(1):207–223CrossRef Meybeck M et al (2003) Global occurrence of major elements in rivers[J]. Treatise Geochem 5(1):207–223CrossRef
go back to reference Moon S, Huh Y, Qin J et al (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors[J]. Geochim Cosmochim Acta 71(6):1411–1430CrossRef Moon S, Huh Y, Qin J et al (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors[J]. Geochim Cosmochim Acta 71(6):1411–1430CrossRef
go back to reference Ran L, Lu XX, Richey JE et al (2015) Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China[J]. Biogeosci 12(4):921–932CrossRef Ran L, Lu XX, Richey JE et al (2015) Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China[J]. Biogeosci 12(4):921–932CrossRef
go back to reference Reeburgh WS (1996) Global environment: water, air, and geochemical cycles (BR)[J]. Int J Environ Stud 70(1):155–156 Reeburgh WS (1996) Global environment: water, air, and geochemical cycles (BR)[J]. Int J Environ Stud 70(1):155–156
go back to reference Shuling J et al (2013) Hydrological characteristics and chemical weathering carbon sink effect in Sancha River Basin[J]. Geogr Res 32(6):1025–1032 Shuling J et al (2013) Hydrological characteristics and chemical weathering carbon sink effect in Sancha River Basin[J]. Geogr Res 32(6):1025–1032
go back to reference Smalley IJ (2006) Liu Tungsheng 1988: Loess in China (second edition). Beijing: China Ocean Press, Berlin: Springer-Verlag, 224 pp[J]. Progress in Phys Geograp 30(5):673–676. Smalley IJ (2006) Liu Tungsheng 1988: Loess in China (second edition). Beijing: China Ocean Press, Berlin: Springer-Verlag, 224 pp[J]. Progress in Phys Geograp 30(5):673–676.
go back to reference Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters[J]. Ecol Model 19(3):227–230 Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters[J]. Ecol Model 19(3):227–230
go back to reference Su XS, Wu XF, Lin XY (2006) Characteristics of the main chemical components and the variation of delta (13)C along the Yellow River [J]. People’s Yellow River 28(5):29–31 Su XS, Wu XF, Lin XY (2006) Characteristics of the main chemical components and the variation of delta (13)C along the Yellow River [J]. People’s Yellow River 28(5):29–31
go back to reference Sun W, Cheng B, Rong LI (2009) Multitime scale correlations between runoff and regional climate variations in the headwater region of the Yellow River[J]. Acta Geogr Sin 64(1):117–127 Sun W, Cheng B, Rong LI (2009) Multitime scale correlations between runoff and regional climate variations in the headwater region of the Yellow River[J]. Acta Geogr Sin 64(1):117–127
go back to reference Sun H, Han J, Li D et al (2011) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China[J]. Sci Total Environ 408(20):4749–4760CrossRef Sun H, Han J, Li D et al (2011) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China[J]. Sci Total Environ 408(20):4749–4760CrossRef
go back to reference Tan H, Zhou H, Rao W et al (2012) Geochemical constraints on seasonal recharge of water and major dissolved solutes in the Huangshui River, China[J]. Chin J Geochem 31(2):155–164CrossRef Tan H, Zhou H, Rao W et al (2012) Geochemical constraints on seasonal recharge of water and major dissolved solutes in the Huangshui River, China[J]. Chin J Geochem 31(2):155–164CrossRef
go back to reference Tian MY, Yang XK et al (2019) Impact of land cover types on riverine CO2 outgassing in the Yellow River source region[J]. Water 11(11):2243CrossRef Tian MY, Yang XK et al (2019) Impact of land cover types on riverine CO2 outgassing in the Yellow River source region[J]. Water 11(11):2243CrossRef
go back to reference Wu L, Huh Y, Qin J et al (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau[J]. Geochim Cosmochim Acta 69(22):5279–5294CrossRef Wu L, Huh Y, Qin J et al (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau[J]. Geochim Cosmochim Acta 69(22):5279–5294CrossRef
go back to reference Wu W, Yang J, Xu S et al (2008) Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: silicate weathering and CO2 consumption[J]. Appl Geochem 23(12):3712–3727CrossRef Wu W, Yang J, Xu S et al (2008) Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: silicate weathering and CO2 consumption[J]. Appl Geochem 23(12):3712–3727CrossRef
go back to reference Xing Z et al (2016) The influence from the shrinking cryosphere and strengthening evapotranspiration on hydrologic process in a cold basin, Qilian Mountains[J]. Globandplanetary Chang 144:119–128 Xing Z et al (2016) The influence from the shrinking cryosphere and strengthening evapotranspiration on hydrologic process in a cold basin, Qilian Mountains[J]. Globandplanetary Chang 144:119–128
go back to reference Yang S, Li C (1999) Element composition and geological background of sediments from the Yangtze River and the Yellow River[J]. Mar Geol Q Geol 19(2):19–26 Yang S, Li C (1999) Element composition and geological background of sediments from the Yangtze River and the Yellow River[J]. Mar Geol Q Geol 19(2):19–26
go back to reference Zhang J, Huang WW, Létolle R et al (1995) Major element chemistry of the Huanghe (Yellow River), China - weathering processes and chemical fluxes[J]. J Hydrol 168(1–4):173–203CrossRef Zhang J, Huang WW, Létolle R et al (1995) Major element chemistry of the Huanghe (Yellow River), China - weathering processes and chemical fluxes[J]. J Hydrol 168(1–4):173–203CrossRef
go back to reference Zhang SR, Lu XX, Higgitt DL et al (2007) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences[J]. J Geophys Res Earth Surf 112(F1):F01011CrossRef Zhang SR, Lu XX, Higgitt DL et al (2007) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences[J]. J Geophys Res Earth Surf 112(F1):F01011CrossRef
go back to reference Zhu YL, Chen J, Chen GC (2011) Runoff variation and its impacting factors in the headwaters of the Yangtze River in recent 32 years. J Yangtze River Sci Res Inst 28(6):1–4 Zhu YL, Chen J, Chen GC (2011) Runoff variation and its impacting factors in the headwaters of the Yangtze River in recent 32 years. J Yangtze River Sci Res Inst 28(6):1–4
Metadata
Title
Major ion chemistry in the headwater region of the Yellow River: impact of land covers
Authors
Su Yuanrong
Yu Ruihong
Tian Mingyang
Yang Xiankun
Ran Lishan
Hu Haizhu
Zhang Zhuangzhuang
Lu Xixi
Publication date
01-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 11/2021
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-021-09692-6

Other articles of this Issue 11/2021

Environmental Earth Sciences 11/2021 Go to the issue