Skip to main content
Top

2017 | OriginalPaper | Chapter

6. Marx-Sraffa Equilibria as Eigensystems

Author : Bangxi Li

Published in: Linear Theory of Fixed Capital and China’s Economy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter develops formal discussion of equilibrium of the Marx-Sraffa model from the angle of the eigenvalue and eigenvectors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
As for details of mathematical description, refer to, e.g. Gantmacher (1959), Ben-Israel et al. (2013) and Strang (1976).
 
2
Consider an \(m\times n\) matrix \(G=( G_1, G_2)\) with \(\mathop {\mathrm {rank}}\nolimits (G)=m\), where \(G_1\) and \(G_2\) are of \(m\times m\) and of \(m\times (n-m)\) respectively. Then, G can be decomposed as \(G=X(\varGamma , O)Y\), where \(\varGamma \) is an \(m\times m\) nonsingular matrix, and X and Y are m- and n-dimensional nonsingular matrices respectively. It is evident that triplets of \(X, \, \varGamma \) and Y are chosen from infinite possible combinations. It should be noted that the choice of them is under some restrictions. Let \(Y=\begin{pmatrix} Y_{11} &{} Y_{12} \\ Y_{21} &{} Y_{22} \end{pmatrix}\), and one has \(Y_{11}=(X\varGamma )^{-1} G_1\) and \(Y_{12}=(X\varGamma )^{-1} G_2\). This means that the upper partitions of Y are restricted, whilst the lower partitions, in particular \(Y_{21}\), are arbitrary, insofar as Y is nonsingular.
 
3
Remark that \(\beta \)s are reciprocals of eigenvalues of \(B^+M\). In arguments of economics, unbounded growth factors are usually disregarded.
 
4
\(\frac{p_{2}^{2}}{p_{2}^{0}}=(1-\varphi (r, 2))(1-\varphi (r, 3)) = 0.528 \times 0.704=0.372\). For details see Kurz and Salvadori (1995).
 
5
In setting up the initial value, the price ratio portion of the fixed capital is calculated by the straight-line depreciation method, and the price ratios of brand new fixed capital of types 1 and 2 are taken as \(\frac{{p^{1}}_{3}}{{p^{1}}_{1}}\), with an equilibrium ratio of \(p^{1}\). On the other hand, the price ratios of current goods and consumption goods 1 and 2 are taken as \(\frac{{p^{1}}_{6}}{{p^{1}}_{1}}\), \(\frac{{p^{1}}_{7}}{{p^{1}}_{1}}\), and \(\frac{{p^{1}}_{8}}{{p^{1}}_{1}}\), respectively, the equilibrium ratio being \(p^{1}\). That is, the initial value is given as follows:
$$\begin{aligned} p(0)= \begin{pmatrix} 1&\frac{1}{2}&1 \cdot \frac{{p^{1}}_{3}}{{p^{1}}_{1}}&\frac{2}{3} \cdot \frac{{p^{1}}_{3}}{{p^{1}}_{1}}&\frac{1}{3} \cdot \frac{{p^{1}}_{3}}{{p^{1}}_{1}}&\frac{{p^{1}}_{6}}{{p^{1}}_{1}}&\frac{{p^{1}}_{7}}{{p^{1}}_{1}}&\frac{{p^{1}}_{8}}{{p^{1}}_{1}} \end{pmatrix}. \end{aligned}$$
 
Metadata
Title
Marx-Sraffa Equilibria as Eigensystems
Author
Bangxi Li
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4065-8_6