Skip to main content
Top

2014 | OriginalPaper | Chapter

4. Mass Extinction of Species

Author : Andrew Y. Glikson

Published in: Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Early conflicts between uniformitarian and gradual theories of evolution (James Hutton: 1726–1797; Charles Lyell: 1797–1875) and catastrophic theory (Cuvier: 1769–1832) have been progressively resolved by advanced paleontological, sedimentary, volcanic and asteroid impact studies and by paleo-climate studies coupled with precise isotopic age determinations, indicating periods of gradual evolution were interrupted by abrupt events which have transformed the habitat of plants and organisms and resulted in mass extinction of species.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Preferential retention in plants and organisms of 12C relative to 13C measured on well preserved fossils and matrix carbonate allows identification of biological productivity correlated with decreased δ13C in both organic (δ13Corg) and inorganic (δ13Ccarb) fractions.
 
2
Fractionation of oxygen isotopes on evaporation and condensation favors preferential concentration in the air of the light isotope 16O relative to the heavier isotope 18O, leading to heavier δ18O ratios in water with lower temperature, an index recorded in fossils.
 
Literature
go back to reference Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial Cause for the Cretaceous-Tertiary Extinction: Experimental results and theoretical interpretation. Science 208:1095–11086 Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial Cause for the Cretaceous-Tertiary Extinction: Experimental results and theoretical interpretation. Science 208:1095–11086
go back to reference Alvarez W (2003) Comparing the evidence relevant to impacts and flood basalts at times of major mass extinctions. Astrobiology 3:153–161CrossRef Alvarez W (2003) Comparing the evidence relevant to impacts and flood basalts at times of major mass extinctions. Astrobiology 3:153–161CrossRef
go back to reference Bachan A, Van de Schootbrugge B, Fiebig J, McRoberts C, Ciarapica G, Payne J (2012) Carbon cycle dynamics following the end-triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg. Geochem Geophys Geosyst. doi:10.1029/2012GC004150 Bachan A, Van de Schootbrugge B, Fiebig J, McRoberts C, Ciarapica G, Payne J (2012) Carbon cycle dynamics following the end-triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg. Geochem Geophys Geosyst. doi:10.​1029/​2012GC004150
go back to reference Balter V et al (2008) Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology 36:907CrossRef Balter V et al (2008) Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology 36:907CrossRef
go back to reference Beerling DJ (2002a) CO2 and the end-Triassic mass extinction. Nature 415:386–387CrossRef Beerling DJ (2002a) CO2 and the end-Triassic mass extinction. Nature 415:386–387CrossRef
go back to reference Beerling DJ (2002b) Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Nat Acad Sci 99:12567–12571CrossRef Beerling DJ (2002b) Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Nat Acad Sci 99:12567–12571CrossRef
go back to reference Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354CrossRef Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354CrossRef
go back to reference Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840CrossRef Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840CrossRef
go back to reference Berner RA (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217CrossRef Berner RA (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217CrossRef
go back to reference Bodiselitsch B, Montanari A, Koeberl C, Coccioni R (2004) Delayed climate cooling in the Late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302CrossRef Bodiselitsch B, Montanari A, Koeberl C, Coccioni R (2004) Delayed climate cooling in the Late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302CrossRef
go back to reference Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD, Martma T, Meidla T, Nõlvak J (2003) High-resolution isotope stratigraphy of Late Ordovician sequences: constraints on the timing of bio-events and environmental changes associated with mass extinction and glaciation. Geol Soc of Am Bull 115:89–104CrossRef Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD, Martma T, Meidla T, Nõlvak J (2003) High-resolution isotope stratigraphy of Late Ordovician sequences: constraints on the timing of bio-events and environmental changes associated with mass extinction and glaciation. Geol Soc of Am Bull 115:89–104CrossRef
go back to reference Calver CR (2000) Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, South Australia, and the overprint of water column stratification. Precamb Res 100:121–150CrossRef Calver CR (2000) Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, South Australia, and the overprint of water column stratification. Precamb Res 100:121–150CrossRef
go back to reference Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary in Koeberl C and MacLeod KG eds Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol Soc Am Spec Pap 356:55–68 Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary in Koeberl C and MacLeod KG eds Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol Soc Am Spec Pap 356:55–68
go back to reference Courtillot VE, Rennes PR (2003) On the ages of flood basalt events. CR Geosci 335:113–140CrossRef Courtillot VE, Rennes PR (2003) On the ages of flood basalt events. CR Geosci 335:113–140CrossRef
go back to reference Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf A.F, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geosci 4:481–485 Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf A.F, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geosci 4:481–485
go back to reference Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years-ago. Princeton Univ Press, Princeton and Oxford, p 296 Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years-ago. Princeton Univ Press, Princeton and Oxford, p 296
go back to reference Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeCrossRef Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeCrossRef
go back to reference French BM (1998) Traces of Catastrophe. Lunar Planetary Institute 954:120 French BM (1998) Traces of Catastrophe. Lunar Planetary Institute 954:120
go back to reference Gardner AF, Gilmour I (2002) An organic geochemical investigation of terrestrial Cretaceous–Tertiary boundary successions from Brownie Butte, Montana, and the Raton Basin, New Mexico. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:351–362 Gardner AF, Gilmour I (2002) An organic geochemical investigation of terrestrial Cretaceous–Tertiary boundary successions from Brownie Butte, Montana, and the Raton Basin, New Mexico. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:351–362
go back to reference Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology 34:461–464 Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology 34:461–464
go back to reference Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937CrossRef Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937CrossRef
go back to reference Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer, Dordrecht, p 149CrossRef Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer, Dordrecht, p 149CrossRef
go back to reference Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013a) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76CrossRef Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013a) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76CrossRef
go back to reference Glikson AY, Uysal IT (2013b) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia. Earth Sci Rev 125:114–122 Glikson AY, Uysal IT (2013b) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia. Earth Sci Rev 125:114–122
go back to reference Gostin VA, Zbik M (1999) Petrology and microstructure of distal impact ejecta from the Flinders Ranges Australia. Metor Planet Sci 34:587–592CrossRef Gostin VA, Zbik M (1999) Petrology and microstructure of distal impact ejecta from the Flinders Ranges Australia. Metor Planet Sci 34:587–592CrossRef
go back to reference Gostin VA, Haines PW, Jenkins RJF, Compston W, Williams IS (1986) Impact ejecta horizon within late Precambrian shale, Adelaide Geosyncline, South Australia. Science 233:198–200CrossRef Gostin VA, Haines PW, Jenkins RJF, Compston W, Williams IS (1986) Impact ejecta horizon within late Precambrian shale, Adelaide Geosyncline, South Australia. Science 233:198–200CrossRef
go back to reference Gradstein FM, Ogg JG (2004) Geologic time scale 2004—why, how, and where next. Lethaia 37:175–181CrossRef Gradstein FM, Ogg JG (2004) Geologic time scale 2004—why, how, and where next. Lethaia 37:175–181CrossRef
go back to reference Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107CrossRef Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107CrossRef
go back to reference Grey K (2005) Ediacaran palynology of Australia, vol 31. Association of Australasian Palaeontologists Mem, Canberra, p 439 Grey K (2005) Ediacaran palynology of Australia, vol 31. Association of Australasian Palaeontologists Mem, Canberra, p 439
go back to reference Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology 5:459–462CrossRef Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology 5:459–462CrossRef
go back to reference Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford
go back to reference Hames W, McHone JG, Renne P, Ruppel C (2003) The Central Atlantic Magmatic Province: insights from fragments of Pangea. Geophys Monog Series 136:267 Hames W, McHone JG, Renne P, Ruppel C (2003) The Central Atlantic Magmatic Province: insights from fragments of Pangea. Geophys Monog Series 136:267
go back to reference Joachimski MM, Xulong L, Shen S, Jiang H, Chen B, Sun Y (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–198CrossRef Joachimski MM, Xulong L, Shen S, Jiang H, Chen B, Sun Y (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–198CrossRef
go back to reference Jourdan F, Marzoli A, Bertrand HS, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias. Lithos 110:167–180CrossRef Jourdan F, Marzoli A, Bertrand HS, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias. Lithos 110:167–180CrossRef
go back to reference Kaiho KY, Kajiwara K, Tazaki M, Ueshima N, Takeda H, Kawahata T, Arinobu R, Ishiwatari A, Hirai MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery. Paleoceanography 14:511–524CrossRef Kaiho KY, Kajiwara K, Tazaki M, Ueshima N, Takeda H, Kawahata T, Arinobu R, Ishiwatari A, Hirai MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery. Paleoceanography 14:511–524CrossRef
go back to reference Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofmov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91CrossRef Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofmov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91CrossRef
go back to reference Keller G (1986) Stepwise mass extinctions and impact events; late Eocene to early Oligocene. Mar Micropaleontol 10:267–293CrossRef Keller G (1986) Stepwise mass extinctions and impact events; late Eocene to early Oligocene. Mar Micropaleontol 10:267–293CrossRef
go back to reference Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757CrossRef Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757CrossRef
go back to reference Korte C, Hesselbo SP, Jenkyns HC, Rickaby REM (2009) Palaeo-environmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J Geol Soc London 166:431–445 Korte C, Hesselbo SP, Jenkyns HC, Rickaby REM (2009) Palaeo-environmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J Geol Soc London 166:431–445
go back to reference Korte C (2010) Kozur HW (2010) Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J Asian Earth Sci 39:215–235CrossRef Korte C (2010) Kozur HW (2010) Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J Asian Earth Sci 39:215–235CrossRef
go back to reference Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187CrossRef Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187CrossRef
go back to reference Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160CrossRef Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160CrossRef
go back to reference Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeo, Palaeoclim, Palaeoecol 132:195–210CrossRef Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeo, Palaeoclim, Palaeoecol 132:195–210CrossRef
go back to reference Maruoka T, Koeberl C, Bohor BF (2007) Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleo environment after the K-T impact event. Earth Planet Sci Lett 253:226–238CrossRef Maruoka T, Koeberl C, Bohor BF (2007) Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleo environment after the K-T impact event. Earth Planet Sci Lett 253:226–238CrossRef
go back to reference McCracken MC, Convey C, Thompson SL, Weissman PR (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth, Glob Planet Change 9:263–273 McCracken MC, Convey C, Thompson SL, Weissman PR (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth, Glob Planet Change 9:263–273
go back to reference McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:549–557CrossRef McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:549–557CrossRef
go back to reference McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390CrossRef McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390CrossRef
go back to reference McGhee GR (1996) The late Devonian mass extinction. Columbia University Press, New York McGhee GR (1996) The late Devonian mass extinction. Columbia University Press, New York
go back to reference Monechi S, Buccianti A, Gardin S (2000) Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis. Mar Micropaleontol 39:219–237CrossRef Monechi S, Buccianti A, Gardin S (2000) Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis. Mar Micropaleontol 39:219–237CrossRef
go back to reference Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107CrossRef Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107CrossRef
go back to reference Olsen PE, Sues HD (1986) Correlation of continental late Triassic and early Jurassic sediments and patterns of the Triassic: Jurassic tetrapod transition. In: Padian K (ed) The beginning of the age of Dinosaurs. Cambridge University Press, Cambridge, p 321–351 Olsen PE, Sues HD (1986) Correlation of continental late Triassic and early Jurassic sediments and patterns of the Triassic: Jurassic tetrapod transition. In: Padian K (ed) The beginning of the age of Dinosaurs. Cambridge University Press, Cambridge, p 321–351
go back to reference Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to Paleocene-Eocene thermal maximum carbon release: a model-data comparison. Geology 36:315–318CrossRef Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to Paleocene-Eocene thermal maximum carbon release: a model-data comparison. Geology 36:315–318CrossRef
go back to reference Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113CrossRef Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113CrossRef
go back to reference Poag CW (1997) Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582–590CrossRef Poag CW (1997) Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582–590CrossRef
go back to reference Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102:21645–21664CrossRef Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102:21645–21664CrossRef
go back to reference Racki G (2003) End-Permian mass extinction: oceanographic consequences of double catastrophic volcanism. Lethaia 36:171–173CrossRef Racki G (2003) End-Permian mass extinction: oceanographic consequences of double catastrophic volcanism. Lethaia 36:171–173CrossRef
go back to reference Renne PR, Zhang Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian: Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416CrossRef Renne PR, Zhang Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian: Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416CrossRef
go back to reference Ross CA, Ross RP (1995) Permian sequence stratigraphy. In: Scholle PA et al. (eds) The Permian of northern Pangea, vol 1. Springer, Berlin, p 98–123 Ross CA, Ross RP (1995) Permian sequence stratigraphy. In: Scholle PA et al. (eds) The Permian of northern Pangea, vol 1. Springer, Berlin, p 98–123
go back to reference Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen nov a Late Devonian gymnosperm with cupulate ovules. Bot Gaz 150:170–189CrossRef Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen nov a Late Devonian gymnosperm with cupulate ovules. Bot Gaz 150:170–189CrossRef
go back to reference Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRef Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRef
go back to reference Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL et al (2010) The Chicxulub Asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary. Science 327(5970):1214–1218CrossRef Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL et al (2010) The Chicxulub Asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary. Science 327(5970):1214–1218CrossRef
go back to reference Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, p 35–52 Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, p 35–52
go back to reference Stephens NP, Sumner DY (2002) Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeo 3024:1–17 Stephens NP, Sumner DY (2002) Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeo 3024:1–17
go back to reference Tohver E et al (2012) Geochronological constraints on the age of a Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochim et Cosmochim Acta 86:214–227CrossRef Tohver E et al (2012) Geochronological constraints on the age of a Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochim et Cosmochim Acta 86:214–227CrossRef
go back to reference Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian crisis. Geology 29:351–354CrossRef Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian crisis. Geology 29:351–354CrossRef
go back to reference Walter MR, Veevers JJ, Calver CR, Gorjan, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models: Precamb Res 100:371–433 Walter MR, Veevers JJ, Calver CR, Gorjan, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models: Precamb Res 100:371–433
go back to reference Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, p 242 Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, p 242
go back to reference Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci, pnas.1001706107 Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci, pnas.1001706107
go back to reference Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33CrossRef Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33CrossRef
go back to reference Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158CrossRef Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158CrossRef
go back to reference Williams GE, Gostin VA (2005) The Acraman—Bunyeroo impact event (Ediacaran) South Australia and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620CrossRef Williams GE, Gostin VA (2005) The Acraman—Bunyeroo impact event (Ediacaran) South Australia and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620CrossRef
go back to reference Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:431–442 Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:431–442
go back to reference Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRef Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRef
Metadata
Title
Mass Extinction of Species
Author
Andrew Y. Glikson
Copyright Year
2014
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-7332-5_4