Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Massive Access with Channel Reciprocity

Author : Xiaoming Chen

Published in: Massive Access for Cellular Internet of Things Theory and Technique

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we propose a comprehensive fully non-orthogonal communication framework for cellular IoT in TDD mode. Firstly, we design a fully non-orthogonal communication scheme which consists of non-orthogonal channel estimation and non-orthogonal multiple access. Then, we analyze the performance of the proposed fully non-orthogonal communication, and derive a tight lower bound on the spectral efficiency in terms of key system parameters and channel conditions. Meanwhile, several novel insights are provided on spectral efficiency via asymptotic analysis in three important cases, i.e., a large number of base station (BS) antennas, a high BS transmit power, and perfect channel state information (CSI) at the BS. Finally, we optimize the performance of the proposed fully non-orthogonal communication and present two simple but efficient optimization algorithms for maximizing the weighted sum of spectral efficiency. Extensive simulation results validate the effectiveness of the proposed schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The proposed fully non-orthogonal communication framework can be extended to a multi-cell scenario directly. We will study the multi-cell case later.
 
2
In practical systems, due to the physical size limitation, the IoT device is in general equipped with a single antenna [7, 12]. If the UE has multiple antennas, some signal receiving schemes, e.g., antenna selection, can be adopted to enhance the performance. Then, it is equivalent to the case of a single-antenna UE.
 
3
In practice, the large-scale antenna array at the BS might be correlated in some scenarios. In general, the channel from the BS to the UEm,n can be represented as R m,n h m,n, where R m,n is the correlation matrix and h m,n is the channel small-scale fading vector with i.i.d. zero mean and unit variance complex Gaussian distributed random variable. Since the correlation matrix R m,n usually varies slowly compared to h m,n, it is reasonably assumed that R m,n is known at both the BS and the UE. Mathematically, the impact of the correlation matrix R m,n is equivalent to that of the path loss α m,n in the case of i.i.d. channel, thus the proposed fully non-orthogonal transmission scheme is also applicable in the scenario of channel correlation.
 
4
By measuring a large number of samples in a long training time, the residual interference over i.i.d. Rayleigh channels can be accurately approximated using a Gaussian distribution due to the central limit theorem and its variance is a function of the received power [21]. Then, by comparing the powers of the residual interference and the received signal, the coefficient η m,n can be obtained.
 
Literature
1.
go back to reference M. Shirvanimoghaddam, M. Dohler, S.J. Johnson, Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017)CrossRef M. Shirvanimoghaddam, M. Dohler, S.J. Johnson, Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017)CrossRef
2.
go back to reference X. Chen, Z. Zhang, C. Zhong, R. Jia, D.W.K. Ng, Fully non-orthogonal communication for massive access. IEEE Trans. Commun. 66(4), 1717–1731 (2018)CrossRef X. Chen, Z. Zhang, C. Zhong, R. Jia, D.W.K. Ng, Fully non-orthogonal communication for massive access. IEEE Trans. Commun. 66(4), 1717–1731 (2018)CrossRef
3.
go back to reference O. Elijah, C.Y. Leow, T.A. Rahman, S. Nunoo, S.Z. Lliya, A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun. Surv. Tuts 18(2), 905–923 (2016)CrossRef O. Elijah, C.Y. Leow, T.A. Rahman, S. Nunoo, S.Z. Lliya, A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun. Surv. Tuts 18(2), 905–923 (2016)CrossRef
4.
go back to reference X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, R. Jia, Exploiting inter-user interference for secure massive non-Orthogonal multiple access. IEEE J. Sel. Areas Commun. 36(4), 788–801 (2018)CrossRef X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, R. Jia, Exploiting inter-user interference for secure massive non-Orthogonal multiple access. IEEE J. Sel. Areas Commun. 36(4), 788–801 (2018)CrossRef
5.
go back to reference A. Bayesteh, A.K. Khandani, Asymptotic analysis of the amount of CSI feedback in MIMO broadcast channels. IEEE Trans. Inf. Theory 58(3), 1612–1629 (2012)MathSciNetCrossRef A. Bayesteh, A.K. Khandani, Asymptotic analysis of the amount of CSI feedback in MIMO broadcast channels. IEEE Trans. Inf. Theory 58(3), 1612–1629 (2012)MathSciNetCrossRef
6.
7.
go back to reference T.L. Marzetta, Noncooperative celluar wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)CrossRef T.L. Marzetta, Noncooperative celluar wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)CrossRef
8.
go back to reference J. Hoydis, S.T. Brink, M. Debbah, Massive MIMO in the UL/DL of cellular networks: how many antennas do we need. IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)CrossRef J. Hoydis, S.T. Brink, M. Debbah, Massive MIMO in the UL/DL of cellular networks: how many antennas do we need. IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)CrossRef
9.
go back to reference E.G. Larsson, H.V. Poor, Joint beamforming and broadcasting in massive MIMO. IEEE Trans. Wirel. Commun. 15(4), 3058–3070 (2016)CrossRef E.G. Larsson, H.V. Poor, Joint beamforming and broadcasting in massive MIMO. IEEE Trans. Wirel. Commun. 15(4), 3058–3070 (2016)CrossRef
10.
go back to reference J. Jose, A. Ashikhmin, T.L. Marzetta, S. Vishwanath, Pilot contamination and precoding in multi-cell TDD systems. IEEE Trans. Wirel. Commun. 10(8), 2640–2651 (2011)CrossRef J. Jose, A. Ashikhmin, T.L. Marzetta, S. Vishwanath, Pilot contamination and precoding in multi-cell TDD systems. IEEE Trans. Wirel. Commun. 10(8), 2640–2651 (2011)CrossRef
11.
go back to reference J. Zhang, R. Schober, V.K. Bhargava, Secure transmission in multicell massive MIMO systems. IEEE Trans. Wirel. Commun. 13(9), 4766–4781 (2014)CrossRef J. Zhang, R. Schober, V.K. Bhargava, Secure transmission in multicell massive MIMO systems. IEEE Trans. Wirel. Commun. 13(9), 4766–4781 (2014)CrossRef
12.
go back to reference T.V. Chien, E. Bjornson, E.G. Larsson, Joint power allocation and user association optimization for massive MIMO systems. IEEE Trans. Wirel. Commun. 15(9), 6384–399 (2016)CrossRef T.V. Chien, E. Bjornson, E.G. Larsson, Joint power allocation and user association optimization for massive MIMO systems. IEEE Trans. Wirel. Commun. 15(9), 6384–399 (2016)CrossRef
13.
go back to reference M.F. Hanif, Z. Ding, T. Ratnarajah, G.K. Karagiannidis, A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 64(1), 76–88 (2016)MathSciNetCrossRef M.F. Hanif, Z. Ding, T. Ratnarajah, G.K. Karagiannidis, A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 64(1), 76–88 (2016)MathSciNetCrossRef
14.
go back to reference C. Zhong, Z. Zhang, Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett. 20(12), 2478–2481 (2016)CrossRef C. Zhong, Z. Zhang, Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett. 20(12), 2478–2481 (2016)CrossRef
15.
go back to reference W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2017)CrossRef W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2017)CrossRef
16.
go back to reference S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G: potentials and challenges. IEEE Commun. Surv. Tuts 19(2), 721–742 (2017)CrossRef S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G: potentials and challenges. IEEE Commun. Surv. Tuts 19(2), 721–742 (2017)CrossRef
17.
go back to reference J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef
18.
go back to reference V. Raghavan, S. Subramanian, J. Cezanne, A. Sampath, O.H. Koymen, J. Li, Single-user versus multi-user precoding for millimeter wave MIMO systems. IEEE J. Sel. Areas Commun. 35(6), 1387–1401 (2017)CrossRef V. Raghavan, S. Subramanian, J. Cezanne, A. Sampath, O.H. Koymen, J. Li, Single-user versus multi-user precoding for millimeter wave MIMO systems. IEEE J. Sel. Areas Commun. 35(6), 1387–1401 (2017)CrossRef
19.
go back to reference S. Roger, D. Calabuig, J. Cabrejas, J.F. Monserrat, Multi-user non-coherent detection for downlink MIMO communication. IEEE Signal Process. Lett. 21(10), 1225–1229 (2014)CrossRef S. Roger, D. Calabuig, J. Cabrejas, J.F. Monserrat, Multi-user non-coherent detection for downlink MIMO communication. IEEE Signal Process. Lett. 21(10), 1225–1229 (2014)CrossRef
20.
go back to reference V. Raghavan, J.H. Kotecha, A.M. Sayeed, Why does the Kronecker model result in misleading capacity estimates? IEEE Trans. Inf. Theory 56(10), 4843–4864 (2010)MathSciNetCrossRef V. Raghavan, J.H. Kotecha, A.M. Sayeed, Why does the Kronecker model result in misleading capacity estimates? IEEE Trans. Inf. Theory 56(10), 4843–4864 (2010)MathSciNetCrossRef
21.
go back to reference P. Li, R.C. de Lamare, R. Fa, Multiple feedback successive interference cancellation detection for multiuser MIMO systems. IEEE Trans. Wirel. Commun. 10(8), 2434–2439 (2011)CrossRef P. Li, R.C. de Lamare, R. Fa, Multiple feedback successive interference cancellation detection for multiuser MIMO systems. IEEE Trans. Wirel. Commun. 10(8), 2434–2439 (2011)CrossRef
23.
go back to reference S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)CrossRef S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)CrossRef
24.
go back to reference X. Chen, L. Lei, Energy-efficient optimization for physical layer security in multi-antenna downlink networks with QoS guarantee. IEEE Commun. Lett. 17(4), 637–640 (2013)CrossRef X. Chen, L. Lei, Energy-efficient optimization for physical layer security in multi-antenna downlink networks with QoS guarantee. IEEE Commun. Lett. 17(4), 637–640 (2013)CrossRef
25.
go back to reference S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process. Lett. 22(10), 1647–1651 (2015)CrossRef S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process. Lett. 22(10), 1647–1651 (2015)CrossRef
26.
go back to reference Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)CrossRef Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)CrossRef
Metadata
Title
Massive Access with Channel Reciprocity
Author
Xiaoming Chen
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6597-3_4