Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Materials Processing, from Ideas to Practice

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dr. Jiann-Yang Hwang served as the Director of the Institute of Materials Processing at Michigan Technological University for more than 20 years. Many technologies have been developed from ideas to commercial practices in his career life. This symposium reflects his contributions in this aspect. The cycle of materials such as metals on the earth involved the steps of ore exploration (geology), mining, mineral processing, metallurgy, manufacturing, and recycling. Each step is achieved by processing materials using energy. Depending on the process and the forms of energy input, products, and by-products with various environmental impacts are generated through air, water, and solid means. To obtain the most efficient process with the minimum environmental impacts at the best economics is the driving force that continuously pushes the advances of technologies. Variables in the materials, process, and energy are common parameters facilitating the development of ideas for technology advancements. Dr. Hwang learned earth sciences, mineralogy, characterization, mineral processing, and metallurgy during his undergraduate and graduate studies. Mining, materials, and processing, and environmental and economics are mostly self-studied at postgraduate time, partly pushed by the research needs from projects he wanted to conduct. Understanding the parameters involved in the materials, energy, environment, and economics is fundamental to a systematic approach. The validity of ideas and their potential to move to practice depend on the soundness of the system. The author reviewed several cases of his research to illustrate their relations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hwang JY, Kullerud G, Takayasu M, FriedlaenderFJ, and Wankat PC (1982) Selective seeding for magnetic separations. IEEE Trans Mag 18:1689–1691 Hwang JY, Kullerud G, Takayasu M, FriedlaenderFJ, and Wankat PC (1982) Selective seeding for magnetic separations. IEEE Trans Mag 18:1689–1691
2.
go back to reference Hwang JY, Kullerud G, FriedlaenderFJ, Takayasu M (1987) Ultrafine particle processing: alunite beneficiation. AIME-SME Trans 280:1961–1964 Hwang JY, Kullerud G, FriedlaenderFJ, Takayasu M (1987) Ultrafine particle processing: alunite beneficiation. AIME-SME Trans 280:1961–1964
3.
go back to reference Mendenhall GD, Geng Y, Hwang JY (1996) Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes. J Colloid Int Sci 184:519–526CrossRef Mendenhall GD, Geng Y, Hwang JY (1996) Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes. J Colloid Int Sci 184:519–526CrossRef
4.
go back to reference Hwang JY, Takayasu M, FriedlaenderFJ, Kullerud G (1984) Application of magnetic susceptibility gradients to magnetic separation. J ApplPhys 55:2592–2594 Hwang JY, Takayasu M, FriedlaenderFJ, Kullerud G (1984) Application of magnetic susceptibility gradients to magnetic separation. J ApplPhys 55:2592–2594
5.
go back to reference Hwang JY (2002) Adsorption of surfactant dispersed nanometer magnetite. J Minerals Mater Char Eng 1(2):132–140 Hwang JY (2002) Adsorption of surfactant dispersed nanometer magnetite. J Minerals Mater Char Eng 1(2):132–140
6.
go back to reference Hwang JY (1990) Fine coal cleaning with advanced magnetic enhancement technology. In: Sixth coal preparation utilization, and environmental control conference, proceedings, pp 290–297 Hwang JY (1990) Fine coal cleaning with advanced magnetic enhancement technology. In: Sixth coal preparation utilization, and environmental control conference, proceedings, pp 290–297
7.
go back to reference Hwang JY, Shi S, Sun X, Zhang Z, Wen C (2013) Electric charge and hydrogen storage. Int J Energy Res 37(7):741–745CrossRef Hwang JY, Shi S, Sun X, Zhang Z, Wen C (2013) Electric charge and hydrogen storage. Int J Energy Res 37(7):741–745CrossRef
8.
go back to reference Li X, Hwang JY, Shi S, Sun X, Zhang Z (2010) Effects of electric potential on hydrogen adsorption. Carbon 48(3):876–880CrossRef Li X, Hwang JY, Shi S, Sun X, Zhang Z (2010) Effects of electric potential on hydrogen adsorption. Carbon 48(3):876–880CrossRef
9.
go back to reference Xu Z, Wang H, Hwang JY (2007) Complex carbon nanotube superstructures synthesized with natural mineral catalysts. Carbon 45(4):873–879CrossRef Xu Z, Wang H, Hwang JY (2007) Complex carbon nanotube superstructures synthesized with natural mineral catalysts. Carbon 45(4):873–879CrossRef
10.
go back to reference Sun X, Hwang JY, Shi S (2010) Hydrogen storage in mesoporous metal oxides with catalyst and external electric field. J Phys Chem C 114(15):7178–7184CrossRef Sun X, Hwang JY, Shi S (2010) Hydrogen storage in mesoporous metal oxides with catalyst and external electric field. J Phys Chem C 114(15):7178–7184CrossRef
11.
go back to reference Li X, Hwang JY, Shi S, Sun X, Zhang Z (2010) Effect of piezoelectric material on hydrogen adsorption. Fuel Process Technol 91(9):1087–1089CrossRef Li X, Hwang JY, Shi S, Sun X, Zhang Z (2010) Effect of piezoelectric material on hydrogen adsorption. Fuel Process Technol 91(9):1087–1089CrossRef
12.
go back to reference Hwang JY, Sun X (2012) Removal of Ions from Water with Electrosorption Technology. In: Drelich J, Hwang JY, et al (eds) Water in Mineral Processing.SME Pub, pp 87–95 Hwang JY, Sun X (2012) Removal of Ions from Water with Electrosorption Technology. In: Drelich J, Hwang JY, et al (eds) Water in Mineral Processing.SME Pub, pp 87–95
13.
go back to reference Chen Z, Huang D, Hwang JY (2019) Effect of styrene addition on chemically induced grafting of 4-vinylbenzyl chloride onto low-density polyethylene for anion exchange membrane preparation. Polym Int 68(5):972–978CrossRef Chen Z, Huang D, Hwang JY (2019) Effect of styrene addition on chemically induced grafting of 4-vinylbenzyl chloride onto low-density polyethylene for anion exchange membrane preparation. Polym Int 68(5):972–978CrossRef
14.
go back to reference Hwang JY, Popko D, Li B, Drelich J, Bagley S (2008) Antimicrobial property of copper stamp sand. JOM 61(2):288 Hwang JY, Popko D, Li B, Drelich J, Bagley S (2008) Antimicrobial property of copper stamp sand. JOM 61(2):288
15.
go back to reference Hwang JY, Liu X, Kesling B (1994) Sand reclamation for a steel foundry. AFS Trans 101:807–815 Hwang JY, Liu X, Kesling B (1994) Sand reclamation for a steel foundry. AFS Trans 101:807–815
16.
go back to reference Hwang JY, Liu X, Hozeska TJ, Kesling B (1995) Reclamation of foundry sand using microwave selective heating. AFS Trans 102:789–795 Hwang JY, Liu X, Hozeska TJ, Kesling B (1995) Reclamation of foundry sand using microwave selective heating. AFS Trans 102:789–795
17.
go back to reference Hwang JY, Song XM (1997) Replacing Al powder with Al slag or recycled foil in cellular concrete. JOM 49(8):29–30 Hwang JY, Song XM (1997) Replacing Al powder with Al slag or recycled foil in cellular concrete. JOM 49(8):29–30
18.
go back to reference Hwang JY, Huang X, Gillis J, Hein A, Popko D, Tieder R, McKimpson M (1999) Separation and utilization technologies of low NOx Ash. In: Proceedings: 13th international symposium on use and management of coal combustion by-products, vol 1, pp 19–1 to 19–22 Hwang JY, Huang X, Gillis J, Hein A, Popko D, Tieder R, McKimpson M (1999) Separation and utilization technologies of low NOx Ash. In: Proceedings: 13th international symposium on use and management of coal combustion by-products, vol 1, pp 19–1 to 19–22
19.
go back to reference Hwang JY, Huang X, Hein AM (1994) Synthesizing mullite from beneficiated fly ash. JOM 46(5):36–39CrossRef Hwang JY, Huang X, Hein AM (1994) Synthesizing mullite from beneficiated fly ash. JOM 46(5):36–39CrossRef
20.
go back to reference Song XM, Hwang JY (2001) Mechanical properties of wood fiber/recycled tire rubber composites. Forest Prod J 51(5):45–51 Song XM, Hwang JY (2001) Mechanical properties of wood fiber/recycled tire rubber composites. Forest Prod J 51(5):45–51
21.
go back to reference Hwang JY, Jeong M (2001) Separation and quantification of hazardous wastes from abrasive blast media. J AOAC Int 84(3):1–7CrossRef Hwang JY, Jeong M (2001) Separation and quantification of hazardous wastes from abrasive blast media. J AOAC Int 84(3):1–7CrossRef
22.
go back to reference Hwang JY, Huang X (2006) New steel production technology with microwave and electric arc heating. In: Kongoli F, Reddy RG (eds) Advanced processing of metals and materials, vol 5. TMS, pp 251–261 Hwang JY, Huang X (2006) New steel production technology with microwave and electric arc heating. In: Kongoli F, Reddy RG (eds) Advanced processing of metals and materials, vol 5. TMS, pp 251–261
23.
go back to reference Hwang JY, Huang X, Qu S, Wang Y, Shi S, Caneba G (2006) Iron oxide reduction with conventional and microwave heating under CO and H2 atmospheres. In: Howard SM et al (eds) EPD congress 2006. TMS, pp 219–227 Hwang JY, Huang X, Qu S, Wang Y, Shi S, Caneba G (2006) Iron oxide reduction with conventional and microwave heating under CO and H2 atmospheres. In: Howard SM et al (eds) EPD congress 2006. TMS, pp 219–227
24.
go back to reference Peng Z, Hwang JY, Mouris J, Hutcheon R, Huang X (2010) Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int 50(11):1590–1596CrossRef Peng Z, Hwang JY, Mouris J, Hutcheon R, Huang X (2010) Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int 50(11):1590–1596CrossRef
25.
go back to reference Sun X, Hwang JY, Huang X (2008) The microwave processing of electric arc furnace dust. JOM 60(10):26–30CrossRef Sun X, Hwang JY, Huang X (2008) The microwave processing of electric arc furnace dust. JOM 60(10):26–30CrossRef
26.
go back to reference Peng Z, Hwang JY, Andriese M, Bel W, Huang X, Wang X (2011) Numerical simulation of heat transfer during microwave heating of magnetite. ISIJ Int 51(6):884–888 Peng Z, Hwang JY, Andriese M, Bel W, Huang X, Wang X (2011) Numerical simulation of heat transfer during microwave heating of magnetite. ISIJ Int 51(6):884–888
27.
go back to reference Peng Z, Hwang JY, Andriese M (2013) Design of double-layer ceramic absorbers for microwave heating. Ceram Int 39:6721–6725CrossRef Peng Z, Hwang JY, Andriese M (2013) Design of double-layer ceramic absorbers for microwave heating. Ceram Int 39:6721–6725CrossRef
28.
go back to reference Peng Z, Hwang JY, Andriese M (2014) Maximum sample volume for permittivity measurements by cavity perturbation technique. IEEE Trans Instrum Measure 63(2):450–455CrossRef Peng Z, Hwang JY, Andriese M (2014) Maximum sample volume for permittivity measurements by cavity perturbation technique. IEEE Trans Instrum Measure 63(2):450–455CrossRef
29.
go back to reference Peng Z, Hwang JY, Andriese M (2012) Absorber impedance matching in microwave heating. ApplPhys Express 5(2):077301–077301–3 Peng Z, Hwang JY, Andriese M (2012) Absorber impedance matching in microwave heating. ApplPhys Express 5(2):077301–077301–3
30.
go back to reference Peng Z, Hwang JY, Andriese M (2012) Magnetic loss in microwave heating. ApplPhys Express 5(2):027304–027304–3 Peng Z, Hwang JY, Andriese M (2012) Magnetic loss in microwave heating. ApplPhys Express 5(2):027304–027304–3
31.
go back to reference Peng Z, Hwang JY, Park C-L, Kim B-G, Onyedika G (2012) Numerical analysis of heat transfer characteristics in microwave heating of magnetic dielectrics. Metallurgical Mater Trans 43(3):1070–1078 Peng Z, Hwang JY, Park C-L, Kim B-G, Onyedika G (2012) Numerical analysis of heat transfer characteristics in microwave heating of magnetic dielectrics. Metallurgical Mater Trans 43(3):1070–1078
32.
go back to reference Peng Z, Hwang JY (2015) Microwave-assisted metallurgy. Int Mater Rev 60(1):30–63CrossRef Peng Z, Hwang JY (2015) Microwave-assisted metallurgy. Int Mater Rev 60(1):30–63CrossRef
33.
go back to reference Jiang W, Hwang JY, Hao S, Zhang Y (2018) Effect of carbon coating on magnetite reduction. In: Hwang JY et al. (eds) 9th international symposium on high-temperature metallurgical processing. Springer, pp 447–454 Jiang W, Hwang JY, Hao S, Zhang Y (2018) Effect of carbon coating on magnetite reduction. In: Hwang JY et al. (eds) 9th international symposium on high-temperature metallurgical processing. Springer, pp 447–454
Metadata
Title
Materials Processing, from Ideas to Practice
Author
Jiann-Yang Hwang
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65241-8_1

Premium Partners