Skip to main content
Top
Published in: Thermal Engineering 12/2023

01-12-2023 | RENEWABLE ENERGY, HYDROPOWER

Mathematical Modeling and Numerical Research of the Aerodynamic Wake Behind the Wind Turbine of the Ulyanovsk Wind Farm

Authors: M. I. Kornilova, Yu. A. Khakhalev, V. N. Koval’nogov, A. V. Chukalin, E. V. Tsvetova

Published in: Thermal Engineering | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The task of modeling the surface atmospheric boundary layer (ABL) in the wind turbine zone at the location of the Ulyanovsk wind farm is set. Reliable and accurate prediction of the evolution of ABL interacting with a wind farm over a wide range of spatial and temporal scales provides valuable quantitative information about its potential impact on the local meteorological situation and is of great importance for optimizing both the design (placement of turbines) and the operation of wind farms. The main problems of modeling and numerical investigation of the atmospheric boundary layer in combination with a wind turbine are considered. The main modeling problems include: multiscale, accounting for a highly rough inhomogeneous surface, wind irregularity in amplitude, direction and frequency, accounting for convection, solar radiation, stratification and phase transitions and precipitation, turbulence generation, and choice of modeling method and tool. The problem of multiscale research of the ABL-wind turbine system is considered and an overview of computational technologies for solving aerodynamic problems on the scale of one installation and wind farms is given. An analytical review of methods for modeling ABL and its interaction with a wind turbine is carried out. Approaches to the study of ABL based on systems of equations averaged by Reynolds, eddy-resolving models, and direct numerical modeling are considered; their advantages and limitations are given for solving the problem of studying the ABL–wind generator system. The mathematical model of the ABL–wind turbine system is described. The results of mathematical modeling and numerical study of the aerodynamics of the ABL–wind turbine system of the Ulyanovsk wind farm are presented, and numerical data on the attenuation of the aerodynamic wake behind the wind turbine and the restoration of the velocity profile, as well as on the friction resistance on the surface of the wind turbine blade, are obtained and analyzed. The analysis of the results of mathematical modeling of ABL in the wind turbine zone is carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. P. Bezrukikh, Wind Engineering: Reference and Methodical Guide (Energiya, Moscow, 2010) [in Russian]. P. P. Bezrukikh, Wind Engineering: Reference and Methodical Guide (Energiya, Moscow, 2010) [in Russian].
10.
go back to reference V. L. Okulov, “The role of laboratory testing in the development of rotor aerodynamics (review),” Thermophys. Aeromech. 25, 1–20 (2018).CrossRef V. L. Okulov, “The role of laboratory testing in the development of rotor aerodynamics (review),” Thermophys. Aeromech. 25, 1–20 (2018).CrossRef
20.
go back to reference M. V. Kraposhin and S. V. Strizhak, “Object-oriented library SOWFA for solving applied problems of wind power engineering,” Tr. ISP RAN 30 (6), 259–274 (2018). M. V. Kraposhin and S. V. Strizhak, “Object-oriented library SOWFA for solving applied problems of wind power engineering,” Tr. ISP RAN 30 (6), 259–274 (2018).
23.
go back to reference S. V. Strizhak, “Mathematical modeling of flow parameters of a solitary wind power facility,” Nauchn. Vestn. MGTU GA 19, 176–184 (2016). S. V. Strizhak, “Mathematical modeling of flow parameters of a solitary wind power facility,” Nauchn. Vestn. MGTU GA 19, 176–184 (2016).
24.
go back to reference P. Yu. Belyakov and D. Yu. Ryabov, “Mathematical model for studying characteristics and operation modes of a wind power facility with vane wind receiver,” Elektrotekh. Kompleksy Sist. Upr., No. 1, 55–58 (2007). http://www.v-itc.ru/electrotech. Accessed June 21, 2022. P. Yu. Belyakov and D. Yu. Ryabov, “Mathematical model for studying characteristics and operation modes of a wind power facility with vane wind receiver,” Elektrotekh. Kompleksy Sist. Upr., No. 1, 55–58 (2007). http://​www.​v-itc.​ru/​electrotech.​ Accessed June 21, 2022.
27.
go back to reference M. J. Churchfield, S. Lee, P. J. Moriarty, L. A. Martnez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur, “A large-eddy simulation of wind-plant aerodynamics,” in Proc. 50th AIAA Aerospace Sci. Meeting including the New Horizons Forum and Aerospace Expo., Nashville, Tenn., Jan. 9–12, 2012 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2012). https://doi.org/10.2514/6.2012-537 M. J. Churchfield, S. Lee, P. J. Moriarty, L. A. Martnez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur, “A large-eddy simulation of wind-plant aerodynamics,” in Proc. 50th AIAA Aerospace Sci. Meeting including the New Horizons Forum and Aerospace Expo., Nashville, Tenn., Jan. 9–12, 2012 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2012). https://​doi.​org/​10.​2514/​6.​2012-537
31.
go back to reference A. A. Kozin and I. M. Kirpichnikova, “Analysis of a group of vertical-axis wind facilities in MATLAB,” Al’tern. Energ. Ekol., No. 5, 45–49 (2014). A. A. Kozin and I. M. Kirpichnikova, “Analysis of a group of vertical-axis wind facilities in MATLAB,” Al’tern. Energ. Ekol., No. 5, 45–49 (2014).
33.
go back to reference M. O. L. Hansen, Aerodynamics of Wind Turbines (Earthscan, London, 2008). M. O. L. Hansen, Aerodynamics of Wind Turbines (Earthscan, London, 2008).
34.
go back to reference V. N. Lykosov, “Modeling of interaction problems of an atmospheric boundary layer with inhomogenous underlying surface,” Presented at the School for Young Scientists and Int. Conf. on Computational and Informational Technologies for Environmental Sciences (CITES-2017), Tarusa, Zvenigorod, Russia, Aug. 28 – Sept. 7, 2017. http://www.scert.ru/ru/conference/ cites2017/. Accessed June 21, 2022. V. N. Lykosov, “Modeling of interaction problems of an atmospheric boundary layer with inhomogenous underlying surface,” Presented at the School for Young Scientists and Int. Conf. on Computational and Informational Technologies for Environmental Sciences (CITES-2017), Tarusa, Zvenigorod, Russia, Aug. 28 – Sept. 7, 2017. http://​www.​scert.​ru/​ru/​conference/​ cites2017/. Accessed June 21, 2022.
35.
go back to reference P. A. Vorontsov, Turbulence and Vertical Currents in the Atmospheric Boundary Layer (Gidrometeoizdat, Moscow, 1966) [in Russian]. P. A. Vorontsov, Turbulence and Vertical Currents in the Atmospheric Boundary Layer (Gidrometeoizdat, Moscow, 1966) [in Russian].
36.
go back to reference V. N. Kozhevnikov and M. K. Bedanokov, “Nonlinear multi-layer model for flow over mountains of arbitrary shape,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 29, 780–792 (1993). V. N. Kozhevnikov and M. K. Bedanokov, “Nonlinear multi-layer model for flow over mountains of arbitrary shape,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 29, 780–792 (1993).
37.
go back to reference S. S. Zilitinkevich and D. L. Laikhtman, “On the closure of the system of turbulent motion equations for the atmospheric boundary layer,” in Proceedings of the A. I. Voeikov Main Astrophysical Observatory, Vol. 167: Physics of the Boundary Layer of the Atmosphere, Ed. by D. L. Laikhtmana, (Gidrometeoizdat, Leningrad, 1965) [in Russian]. S. S. Zilitinkevich and D. L. Laikhtman, “On the closure of the system of turbulent motion equations for the atmospheric boundary layer,” in Proceedings of the A. I. Voeikov Main Astrophysical Observatory, Vol. 167: Physics of the Boundary Layer of the Atmosphere, Ed. by D. L. Laikhtmana, (Gidrometeoizdat, Leningrad, 1965) [in Russian].
38.
go back to reference A. I. Kuptsov, R. R. Akberov, D. Ya. Islamkhuzin, and F. M. Gimranov, “Numerical modeling of the atmospheric boundary layer with the account of its stratification,” Fundam. Issled., No. 9–7, 1452–1460 (2014). https://fundamental-research.ru/ru/article/view?id= 35083. Accessed May 17, 2022. A. I. Kuptsov, R. R. Akberov, D. Ya. Islamkhuzin, and F. M. Gimranov, “Numerical modeling of the atmospheric boundary layer with the account of its stratification,” Fundam. Issled., No. 9–7, 1452–1460 (2014). https://​fundamental-research.​ru/​ru/​article/​view?​id=​ 35083. Accessed May 17, 2022.
42.
go back to reference P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2006). P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2006).
46.
go back to reference J. P. O’Sullivan, R. Pecnik, and G. Iaccarino, “Investigating turbulence in wind flow over complex terrain,” in Studying Turbulence Using Numerical Simulation Databases — 13: Proc. 2010 Summer Program, Stanford, Calif., June 24 – July 20, 2010 (Center for Turbulence Research, Stanford, Calif., 2011), pp. 129–139. http://hdl.handle.net/2292/19204 J. P. O’Sullivan, R. Pecnik, and G. Iaccarino, “Investigating turbulence in wind flow over complex terrain,” in Studying Turbulence Using Numerical Simulation Databases — 13: Proc. 2010 Summer Program, Stanford, Calif., June 24 – July 20, 2010 (Center for Turbulence Research, Stanford, Calif., 2011), pp. 129–139. http://​hdl.​handle.​net/​2292/​19204
49.
go back to reference L. A. Martnez-Tossas, M. J. Churchfield, and S. Leonardi, “Large eddy simulations of the flow past wind turbines: actuator line and disk modeling: LES of the flow past wind turbines: actuator line and disk modeling,” Wind Energy 18, 1047–1060 (2014). https://doi.org/10.1002/we.1747CrossRef L. A. Martnez-Tossas, M. J. Churchfield, and S. Leonardi, “Large eddy simulations of the flow past wind turbines: actuator line and disk modeling: LES of the flow past wind turbines: actuator line and disk modeling,” Wind Energy 18, 1047–1060 (2014). https://​doi.​org/​10.​1002/​we.​1747CrossRef
50.
go back to reference P. K. Jha, M. J. Churchfield, P. J. Moriarty, and S. Schmitz, “Recommendations for the distribution of body force in wind turbine drive line modeling on simulation-type grids with large vortices,” J. Sol. Energy Eng. 136, 031003 (2014). https://doi.org/10.1115/1.4026252CrossRef P. K. Jha, M. J. Churchfield, P. J. Moriarty, and S. Schmitz, “Recommendations for the distribution of body force in wind turbine drive line modeling on simulation-type grids with large vortices,” J. Sol. Energy Eng. 136, 031003 (2014). https://​doi.​org/​10.​1115/​1.​4026252CrossRef
51.
go back to reference S. Pawar, A. Sharma, G. Vijayakumar, C. J. Bay, and S. Yellapantula, “Deep learning for wake modeling of wind turbines,” in Proc. 11th Int. Conf. on Computational Fluid Dynamics (ICCFD11), Maui, Hi., July 11–15, 2022. S. Pawar, A. Sharma, G. Vijayakumar, C. J. Bay, and S. Yellapantula, “Deep learning for wake modeling of wind turbines,” in Proc. 11th Int. Conf. on Computational Fluid Dynamics (ICCFD11), Maui, Hi., July 11–15, 2022.
52.
go back to reference https://www.globalwindatlas.info.api.vortexfdc.com. Accessed May 3, 2022. https://www.globalwindatlas.info.api.vortexfdc.com. Accessed May 3, 2022.
53.
go back to reference J. Twidell and A. D. Weir, Renewable Energy Resources (Chapman & Hall, London, 1986; Energoatomizdat, Moscow, 1990). J. Twidell and A. D. Weir, Renewable Energy Resources (Chapman & Hall, London, 1986; Energoatomizdat, Moscow, 1990).
54.
go back to reference https://www.ecmwf.int/. Accessed May 3, 2022. https://www.ecmwf.int/. Accessed May 3, 2022.
55.
go back to reference GOST (State Standard) R 54084-2010. Model of the Atmosphere in the Boundary Layer at Altitudes from 0 to 3000 m for Aerospace Practices. Parameters (Standartinform, Moscow, 2013). GOST (State Standard) R 54084-2010. Model of the Atmosphere in the Boundary Layer at Altitudes from 0 to 3000 m for Aerospace Practices. Parameters (Standartinform, Moscow, 2013).
56.
go back to reference N. N. Koval’nogov, Applied Liquid and Gas Mechanics (Ul’yanov. Gos. Tekh. Univ., Ulyanovsk, 2010) [in Russian]. N. N. Koval’nogov, Applied Liquid and Gas Mechanics (Ul’yanov. Gos. Tekh. Univ., Ulyanovsk, 2010) [in Russian].
57.
go back to reference V. N. Koval’nogov, Yu. A. Khakhalev, L. V. Khakhaleva, and E. V. Tsvetova, “Mathematical modeling and numerical study of the atmospheric boundary layer in the vicinity of wind farms,” Avtom. Protsessov Upr., No. 3(65), 33–40 (2021). V. N. Koval’nogov, Yu. A. Khakhalev, L. V. Khakhaleva, and E. V. Tsvetova, “Mathematical modeling and numerical study of the atmospheric boundary layer in the vicinity of wind farms,” Avtom. Protsessov Upr., No. 3(65), 33–40 (2021).
58.
go back to reference A. Yu. Snegirev, High-Performance Calculations in Technical Physics. Numerical Simulation of Turbulent Flows: Study Guide (Izd. S.-Peterb. Gos. Politekh. Univ., St. Petersburg, 2009) [in Russian]. A. Yu. Snegirev, High-Performance Calculations in Technical Physics. Numerical Simulation of Turbulent Flows: Study Guide (Izd. S.-Peterb. Gos. Politekh. Univ., St. Petersburg, 2009) [in Russian].
59.
go back to reference https://en.wind-turbine-models.com/turbines/1249-vestas-v126-3.45. Accessed October 9, 2022. https://en.wind-turbine-models.com/turbines/1249-vestas-v126-3.45. Accessed October 9, 2022.
60.
go back to reference S. A. Isaev, P. A. Baranov, M. Yu. Smurov, A. G. Sudakov, and A. V. Shebelev, “Flow control of the semicircular airfoil with a vortex cell at slot suction of air and its blowout into the near wake,” Thermophys. Aeromech. 23, 639–643 (2016).CrossRef S. A. Isaev, P. A. Baranov, M. Yu. Smurov, A. G. Sudakov, and A. V. Shebelev, “Flow control of the semicircular airfoil with a vortex cell at slot suction of air and its blowout into the near wake,” Thermophys. Aeromech. 23, 639–643 (2016).CrossRef
Metadata
Title
Mathematical Modeling and Numerical Research of the Aerodynamic Wake Behind the Wind Turbine of the Ulyanovsk Wind Farm
Authors
M. I. Kornilova
Yu. A. Khakhalev
V. N. Koval’nogov
A. V. Chukalin
E. V. Tsvetova
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 12/2023
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523120066

Other articles of this Issue 12/2023

Thermal Engineering 12/2023 Go to the issue

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Selecting the Startup Option for the Surgut GRES-2 800-MW Power Unit in the Absence of Its Own Steam Source

Premium Partner