Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2022

01-02-2022

Mathematical Modeling of a High-Speed Collision of White Dwarfs—the Explosion Mechanism of Type Ia/Iax Supernovae

Authors: I. M. Kulikov, I. G. Chernykh, A. V. Tutukov

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Type Ia supernovae are not only the major sources of iron but also “standard candles” for measuring distances in the Universe. Although these supernovae are important, their explosion mechanism is still under study. Mathematical modeling is a major (if not the only) tool for studying such astrophysical phenomena. It can be used to compile rather complex scenarios of type Ia supernova explosions. One of the scenarios is a generalized mechanism of gravitational impact, which is based on collisions of white dwarfs. The mathematical model of white dwarfs used in the paper is based on a numerical solution of the equations of gravitational hydrodynamics with an adapted stellar equation of state. The subgrid carbon burning is realized in the form of direct simulation of turbulent burning of the matter. This approach makes it possible to reproduce carbon burning in a more detailed and correct way in terms of energy. To study the scenarios of a gravitational impact, we use an auxiliary one-dimensional statement of the problem of collision of white dwarfs based on an analytical solution of the problem of discontinuity breakdown in a degenerate gas. Despite the simplicity of this problem, some necessary conditions for the ignition of carbon and its further burning can be obtained in the process of its solution. Using computational experiments on a supercomputer to solve problems of type Ia supernova explosions in the full three-dimensional statement, we study in detail scenarios obtained in solving the one-dimensional problems. Two main parameters have been identified, the collision velocity and the minimum temperature of white dwarfs, and an experimental relation has been obtained between these parameters and the scenarios for a type Ia/Iax supernova explosion under a gravitational impact.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Iben and A. Tutukov, “Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass,” Astrophys. J. Suppl. Ser. 54, 335–372 (1984).CrossRef I. Iben and A. Tutukov, “Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass,” Astrophys. J. Suppl. Ser. 54, 335–372 (1984).CrossRef
2.
go back to reference J. Whelan and I. Iben, “Binaries and supernovae of type I,” Astrophys. J. 186, 1007–1014 (1973).CrossRef J. Whelan and I. Iben, “Binaries and supernovae of type I,” Astrophys. J. 186, 1007–1014 (1973).CrossRef
3.
go back to reference R. J. Foley et al., “Type Iax supernovae: a new class of stellar explosion,” Astrophys. J. 767, article ID 57 (2013). R. J. Foley et al., “Type Iax supernovae: a new class of stellar explosion,” Astrophys. J. 767, article ID 57 (2013).
4.
go back to reference C. Raskin, F. X. Timmes, E. Scannapieco, S. Diehl, and C. Fryer, “On type Ia supernovae from the collisions of two white dwarfs,” Mon. Not. R. Astron. Soc. 399, L156–L159 (2009).CrossRef C. Raskin, F. X. Timmes, E. Scannapieco, S. Diehl, and C. Fryer, “On type Ia supernovae from the collisions of two white dwarfs,” Mon. Not. R. Astron. Soc. 399, L156–L159 (2009).CrossRef
5.
go back to reference S. Rosswog, D. Kasen, J. Guillochon, and E. Ramirez-Ruiz, “Collisions of white dwarfs as a new progenitor channel for type Ia supernovae,” Astrophys. J. 705, L128–L132 (2009).CrossRef S. Rosswog, D. Kasen, J. Guillochon, and E. Ramirez-Ruiz, “Collisions of white dwarfs as a new progenitor channel for type Ia supernovae,” Astrophys. J. 705, L128–L132 (2009).CrossRef
6.
go back to reference R. Pakmor, M. Kromer, F. Ropke, S. Sim, A. Ruiter, and W. Hillebrandt, “Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass \( \approx \) 0.9 \( M_{\odot } \),” Nature 463, 61–64 (2010). R. Pakmor, M. Kromer, F. Ropke, S. Sim, A. Ruiter, and W. Hillebrandt, “Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass \( \approx \) 0.9 \( M_{\odot } \),” Nature 463, 61–64 (2010).
7.
go back to reference A. Tanikawa, N. Nakasato, Y. Sato, K. Nomoto, K. Maeda, and I. Hachisu, “Hydrodynamical evolution of merging carbon–oxygen white dwarfs: their pre-supernova structure and observational counterparts,” Astrophys. J. 807, article ID 40 (2015). A. Tanikawa, N. Nakasato, Y. Sato, K. Nomoto, K. Maeda, and I. Hachisu, “Hydrodynamical evolution of merging carbon–oxygen white dwarfs: their pre-supernova structure and observational counterparts,” Astrophys. J. 807, article ID 40 (2015).
8.
go back to reference F. X. Timmes and D. Arnett, “The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics,” Astrophys. J. Suppl. Ser. 125, 277–294 (1999).CrossRef F. X. Timmes and D. Arnett, “The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics,” Astrophys. J. Suppl. Ser. 125, 277–294 (1999).CrossRef
9.
go back to reference I. Kulikov, I. Chernykh, and A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations that is dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests, and model problems,” Astrophys. J. Suppl. Ser. 243, article ID 4 (2019). I. Kulikov, I. Chernykh, and A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations that is dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests, and model problems,” Astrophys. J. Suppl. Ser. 243, article ID 4 (2019).
10.
go back to reference I. M. Kulikov, “Mathematical simulation of turbulent burning of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae,” J. Appl. Ind. Math. 15 (3), 30–38 (2021).MathSciNetCrossRef I. M. Kulikov, “Mathematical simulation of turbulent burning of carbon in the problems of white dwarf mergers and explosions of the type Ia supernovae,” J. Appl. Ind. Math. 15 (3), 30–38 (2021).MathSciNetCrossRef
11.
go back to reference M. Zingale and M. Katz, “On the piecewise parabolic method for compressible flow with stellar equations of state,” Astrophys. J. Suppl. Ser. 216, article ID 31 (2015). M. Zingale and M. Katz, “On the piecewise parabolic method for compressible flow with stellar equations of state,” Astrophys. J. Suppl. Ser. 216, article ID 31 (2015).
12.
go back to reference P. Colella and H. Glaz, “Efficient solution algorithms for the Riemann problem for real gases,” J. Comput. Phys. 59, 264–289 (1985).MathSciNetCrossRef P. Colella and H. Glaz, “Efficient solution algorithms for the Riemann problem for real gases,” J. Comput. Phys. 59, 264–289 (1985).MathSciNetCrossRef
13.
go back to reference K. J. Borkowski et al., “Asymmetric expansion of the youngest galactic supernova remnant G1.9+0.3,” Astrophys. J. Lett. 837, article ID L7 (2017). K. J. Borkowski et al., “Asymmetric expansion of the youngest galactic supernova remnant G1.9+0.3,” Astrophys. J. Lett. 837, article ID L7 (2017).
14.
go back to reference S. Chakraborti, F. Childs, and A. Soderberg, “Young remnants of type Ia supernovae and their progenitors: a study of SNR G1.9+0.3,” Astrophys. J. 819, article ID 37 (2016). S. Chakraborti, F. Childs, and A. Soderberg, “Young remnants of type Ia supernovae and their progenitors: a study of SNR G1.9+0.3,” Astrophys. J. 819, article ID 37 (2016).
Metadata
Title
Mathematical Modeling of a High-Speed Collision of White Dwarfs—the Explosion Mechanism of Type Ia/Iax Supernovae
Authors
I. M. Kulikov
I. G. Chernykh
A. V. Tutukov
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2022
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478922010070

Other articles of this Issue 1/2022

Journal of Applied and Industrial Mathematics 1/2022 Go to the issue

Premium Partners