Skip to main content
Top
Published in: 4OR 3/2020

15-09-2020 | Invited Survey

Mathematical programming formulations for the alternating current optimal power flow problem

Authors: Dan Bienstock, Mauro Escobar, Claudio Gentile, Leo Liberti

Published in: 4OR | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the former yields approximate linear programming formulations, the latter yields formulations of a much more interesting sort: namely, nonconvex nonlinear programs in complex numbers. In this technical survey, we derive formulation variants and relaxations of the alternating current optimal power flow problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We remark that most of the power grid literature uses i to indicate current, and therefore resorts to j to indicate \(\sqrt{-1}\). We chose to keep notation in line with mathematics and the rest of the physical sciences, namely we use \(i=\sqrt{-1}\), and employ I to denote current.
 
Literature
go back to reference Ahmadi A, Majumdar A (2014) DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: 2014 48th annual conference on information sciences and systems (CISS), pp 1–5 Ahmadi A, Majumdar A (2014) DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: 2014 48th annual conference on information sciences and systems (CISS), pp 1–5
go back to reference Ahmadi A, Majumdar A (2019) DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J Appl Algebra Geometry 3(2):193–230 Ahmadi A, Majumdar A (2019) DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J Appl Algebra Geometry 3(2):193–230
go back to reference Andersson G (2008) Modelling and Analysis of electric power systems. EEH-Power Systems Laboratory, Swiss Federal Institute of Technology (ETH), Zürich Andersson G (2008) Modelling and Analysis of electric power systems. EEH-Power Systems Laboratory, Swiss Federal Institute of Technology (ETH), Zürich
go back to reference Anstreicher K (2009) Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J Glob Optim 43:471–484 Anstreicher K (2009) Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J Glob Optim 43:471–484
go back to reference Babaeinejadsarookolaee S, Birchfield A, Christie RD, Coffrin C, DeMarco CL, Diao R, Ferris MC, Fliscounakis S, Greene S, Huang R, Josz C, Korab R, Lesieutre BC, Maeght J, Molzahn DK, Overbye TJ, Panciatici P, Park B, Snodgrass J, Zimmerman R (2019) The power grid library for benchmarking AC optimal power flow algorithms. Technical report. arXiv:1908.02788 Babaeinejadsarookolaee S, Birchfield A, Christie RD, Coffrin C, DeMarco CL, Diao R, Ferris MC, Fliscounakis S, Greene S, Huang R, Josz C, Korab R, Lesieutre BC, Maeght J, Molzahn DK, Overbye TJ, Panciatici P, Park B, Snodgrass J, Zimmerman R (2019) The power grid library for benchmarking AC optimal power flow algorithms. Technical report. arXiv:​1908.​02788
go back to reference Barrows C, Blumsack S, Hines P (2014) Correcting optimal transmission switching for AC power flows. In: 47th Hawaii international conference on system science, pp 2374–2379 Barrows C, Blumsack S, Hines P (2014) Correcting optimal transmission switching for AC power flows. In: 47th Hawaii international conference on system science, pp 2374–2379
go back to reference Beck A, Beck Y, Levron Y, Shtof A, Tetruashvili L (2018) Globally solving a class of optimal power flow problems in radial networks by tree reduction. J Glob Optim 72:373–402 Beck A, Beck Y, Levron Y, Shtof A, Tetruashvili L (2018) Globally solving a class of optimal power flow problems in radial networks by tree reduction. J Glob Optim 72:373–402
go back to reference Bélanger J, Dessaint LA, Kamwa I (2020) An extended optimal transmission switching algorithm adapted for large networks and hydro-electric context. IEEE Access 8:87762–87774 Bélanger J, Dessaint LA, Kamwa I (2020) An extended optimal transmission switching algorithm adapted for large networks and hydro-electric context. IEEE Access 8:87762–87774
go back to reference Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 24(4):597–634 Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 24(4):597–634
go back to reference Belotti P, Cafieri S, Lee J, Liberti L (2010) Feasibility-based bounds tightening via fixed points. In: Du D-Z, Pardalos P, Thuraisingham B (eds) Combinatorial optimization, constraints and applications (COCOA10), vol 6508. LNCS. Springer, New York, pp 65–76 Belotti P, Cafieri S, Lee J, Liberti L (2010) Feasibility-based bounds tightening via fixed points. In: Du D-Z, Pardalos P, Thuraisingham B (eds) Combinatorial optimization, constraints and applications (COCOA10), vol 6508. LNCS. Springer, New York, pp 65–76
go back to reference Bergen Arthur R, Vijay V (2000) Power systems analysis, 2nd edn. Prentice Hall, Upper Saddle River Bergen Arthur R, Vijay V (2000) Power systems analysis, 2nd edn. Prentice Hall, Upper Saddle River
go back to reference Bienstock D (2016) Electrical transmission system cascades and vulnerability: an operations research viewpoint. Number 22 in MOS-SIAM optimization. SIAM, Philadelphia Bienstock D (2016) Electrical transmission system cascades and vulnerability: an operations research viewpoint. Number 22 in MOS-SIAM optimization. SIAM, Philadelphia
go back to reference Bienstock D, Escobar M (2020) Stochastic defense against complex grid attacks. IEEE Trans Control Netw Syst 7(2):842–854 Bienstock D, Escobar M (2020) Stochastic defense against complex grid attacks. IEEE Trans Control Netw Syst 7(2):842–854
go back to reference Bienstock D, Muñoz G (2015) Approximate method for AC transmission switching based on a simple relaxation for ACOPF problems. In: 2015 IEEE power and energy society general meeting, pp 1–5 Bienstock D, Muñoz G (2015) Approximate method for AC transmission switching based on a simple relaxation for ACOPF problems. In: 2015 IEEE power and energy society general meeting, pp 1–5
go back to reference Bienstock D, Verma A (2019) Strong NP-hardness of AC power flows feasibility. Oper Res Lett 47:494–501 Bienstock D, Verma A (2019) Strong NP-hardness of AC power flows feasibility. Oper Res Lett 47:494–501
go back to reference Bonnans JF (1997) Mathematical study of very high voltage power networks I: the optimal DC power flow problem. SIAM J Optim 7:979–990 Bonnans JF (1997) Mathematical study of very high voltage power networks I: the optimal DC power flow problem. SIAM J Optim 7:979–990
go back to reference Bonnans JF (1998) Mathematical study of very high voltage power networks II: the AC power flow problem. SIAM J Appl Math 58:1547–1567 Bonnans JF (1998) Mathematical study of very high voltage power networks II: the AC power flow problem. SIAM J Appl Math 58:1547–1567
go back to reference Bonnans JF (2000) Mathematical study of very high voltage power networks II: the optimal AC power flow problem. Comput Optim Appl 16:83–101 Bonnans JF (2000) Mathematical study of very high voltage power networks II: the optimal AC power flow problem. Comput Optim Appl 16:83–101
go back to reference Bose S, Low S, Teeraratkul T, Hassibi B (2015) Equivalent relaxations of optimal power flow. IEEE Trans Autom Control 60(3):729–742 Bose S, Low S, Teeraratkul T, Hassibi B (2015) Equivalent relaxations of optimal power flow. IEEE Trans Autom Control 60(3):729–742
go back to reference Brown WE, Moreno-Centeno E (2020) Transmission-line switching for load shed prevention via an accelerated linear programming approximation of ac power flows. IEEE Trans Power Syst 35(4):2575–2585 Brown WE, Moreno-Centeno E (2020) Transmission-line switching for load shed prevention via an accelerated linear programming approximation of ac power flows. IEEE Trans Power Syst 35(4):2575–2585
go back to reference Cain M, O’Neill R, Castillo A (2012) History of optimal power flow and formulations. Technical Report Staff Paper, Federal Energy Regulatory Commission Cain M, O’Neill R, Castillo A (2012) History of optimal power flow and formulations. Technical Report Staff Paper, Federal Energy Regulatory Commission
go back to reference Capitanescu F, Wehenkel L (2014) An AC OPF-based heuristic algorithm for optimal transmission switching. In: 2014 power systems computation conference, pp 1–6 Capitanescu F, Wehenkel L (2014) An AC OPF-based heuristic algorithm for optimal transmission switching. In: 2014 power systems computation conference, pp 1–6
go back to reference Capitanescu F, Glavic M, Ernst D, Wehenkel L (2007) Interior-point based algorithms for the solution of optimal power flow problems. Electric Power Syst Res 77(5):508–517 Capitanescu F, Glavic M, Ernst D, Wehenkel L (2007) Interior-point based algorithms for the solution of optimal power flow problems. Electric Power Syst Res 77(5):508–517
go back to reference Carpentier J (1962) Contribution á l’étude du dispatching économique. Bull Société Française des Électriciens 8(3):431–447 Carpentier J (1962) Contribution á l’étude du dispatching économique. Bull Société Française des Électriciens 8(3):431–447
go back to reference Carpentier J (1979) Optimal power flows. Int J Electr Power Energy Syst 1(1):3–15 Carpentier J (1979) Optimal power flows. Int J Electr Power Energy Syst 1(1):3–15
go back to reference Chaojun G, Jirutitijaroen P, Motani M (2015) Detecting false data injection attacks in AC state estimation. IEEE Trans Smart Grid 6(5):2476–2483 Chaojun G, Jirutitijaroen P, Motani M (2015) Detecting false data injection attacks in AC state estimation. IEEE Trans Smart Grid 6(5):2476–2483
go back to reference Coffrin C, Hijazi H, Van Hentenryck P (2016) The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans Power Syst 31(4):3008–3018 Coffrin C, Hijazi H, Van Hentenryck P (2016) The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans Power Syst 31(4):3008–3018
go back to reference Coffrin C, Hijazi H, Van Hentenryck P (2017) Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans Power Syst 32(5):3549–3558 Coffrin C, Hijazi H, Van Hentenryck P (2017) Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans Power Syst 32(5):3549–3558
go back to reference COIN-OR (2006) Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT COIN-OR (2006) Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT
go back to reference Diamond S, Boyd S (2016) CVXPY: a python-embedded modeling language for convex optimization. J Mach Learn Res 17:1–5 Diamond S, Boyd S (2016) CVXPY: a python-embedded modeling language for convex optimization. J Mach Learn Res 17:1–5
go back to reference Diestel R (2017) Graph minors. Springer, Berlin, pp 347–391 Diestel R (2017) Graph minors. Springer, Berlin, pp 347–391
go back to reference Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: Proceedings of European control conference, ECC, Piscataway. IEEE Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: Proceedings of European control conference, ECC, Piscataway. IEEE
go back to reference Fisher EB, O’Neill R, Ferris MC (2008) Optimal transmission switching. IEEE Trans Power Syst 23(3):1346–1355 Fisher EB, O’Neill R, Ferris MC (2008) Optimal transmission switching. IEEE Trans Power Syst 23(3):1346–1355
go back to reference Fourer R, Gay D (2002) The AMPL book. Duxbury Press, Pacific Grove Fourer R, Gay D (2002) The AMPL book. Duxbury Press, Pacific Grove
go back to reference Frank S, Steponavice I, Rebennack S (2012a) Optimal power flow: a bibliographic survey I. Formulations and deterministic methods. Energy Syst 3:221–258 Frank S, Steponavice I, Rebennack S (2012a) Optimal power flow: a bibliographic survey I. Formulations and deterministic methods. Energy Syst 3:221–258
go back to reference Frank S, Steponavice I, Rebennack S (2012b) Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods. Energy Syst 3:259–289 Frank S, Steponavice I, Rebennack S (2012b) Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods. Energy Syst 3:259–289
go back to reference Ghaddar B, Marecek J, Mevissen M (2016) Optimal power flow as a polynomial optimization problem. IEEE Trans Power Syst 31(1):539–546 Ghaddar B, Marecek J, Mevissen M (2016) Optimal power flow as a polynomial optimization problem. IEEE Trans Power Syst 31(1):539–546
go back to reference Gilbert J-C, Josz C (2017) Plea for a semidefinite optimization solver in complex numbers. Technical Report hal-01422932, HAL Archives-Ouvertes Gilbert J-C, Josz C (2017) Plea for a semidefinite optimization solver in complex numbers. Technical Report hal-01422932, HAL Archives-Ouvertes
go back to reference Gill PE (1999) User’s guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR, Stanford University, California Gill PE (1999) User’s guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR, Stanford University, California
go back to reference Gleixner AM, Berthold T, Müller B, Weltge S (2017) Three enhancements for optimization-based bound tightening. J Glob Optim 67(4):731–757 Gleixner AM, Berthold T, Müller B, Weltge S (2017) Three enhancements for optimization-based bound tightening. J Glob Optim 67(4):731–757
go back to reference Glover JD, Sarma MS, Overbye TJ (2008) Power systems analysis and design, 4th edn. Cengage Learning, Stamford Glover JD, Sarma MS, Overbye TJ (2008) Power systems analysis and design, 4th edn. Cengage Learning, Stamford
go back to reference Gómez Expósito A, Romero Ramos E (1999) Reliable load flow technique for radial distribution networks. IEEE Trans Power Syst 14(3):1063–1069 Gómez Expósito A, Romero Ramos E (1999) Reliable load flow technique for radial distribution networks. IEEE Trans Power Syst 14(3):1063–1069
go back to reference Gopinath S, Hijazi H, Weißer T, Nagarajan H, Yetkin M, Sundar K, Bent R (2020) Proving global optimality of ACOPF solutions. In: 2020 power systems computation conference, pp 1–6 Gopinath S, Hijazi H, Weißer T, Nagarajan H, Yetkin M, Sundar K, Bent R (2020) Proving global optimality of ACOPF solutions. In: 2020 power systems computation conference, pp 1–6
go back to reference Hedman KW, O’Neill R, Fisher EB, Oren S (2008) Optimal transmission switching-sensitivity analysis and extensions. IEEE Trans Power Syst 23(3):1469–1479 Hedman KW, O’Neill R, Fisher EB, Oren S (2008) Optimal transmission switching-sensitivity analysis and extensions. IEEE Trans Power Syst 23(3):1469–1479
go back to reference Henneaux P, Kirschen DS (2016) Probabilistic security analysis of optimal transmission switching. IEEE Trans Power Syst 31(1):508–517 Henneaux P, Kirschen DS (2016) Probabilistic security analysis of optimal transmission switching. IEEE Trans Power Syst 31(1):508–517
go back to reference Hijazi H, Coffrin C, Van Hentenryck P (2016) Polynomial SDP cuts for optimal power flow. In: 2016 power systems computation conference, pp 1–7 Hijazi H, Coffrin C, Van Hentenryck P (2016) Polynomial SDP cuts for optimal power flow. In: 2016 power systems computation conference, pp 1–7
go back to reference Hijazi H, Coffrin C, Van Hentenryck P (2017) Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math Program Comput 9:321–367 Hijazi H, Coffrin C, Van Hentenryck P (2017) Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math Program Comput 9:321–367
go back to reference Huneault M, Galiana F (1991) A survey of the optimal power flow literature. IEEE Trans Power Syst 6(2):762–770 Huneault M, Galiana F (1991) A survey of the optimal power flow literature. IEEE Trans Power Syst 6(2):762–770
go back to reference Jabr R (2006) Radial distribution load flow using conic programming. IEEE Trans Power Syst 21(3):1458–1459 Jabr R (2006) Radial distribution load flow using conic programming. IEEE Trans Power Syst 21(3):1458–1459
go back to reference Jabr R (2007) A conic quadratic format for the load flow equations of meshed networks. IEEE Trans Power Syst 22(4):2285–2286 Jabr R (2007) A conic quadratic format for the load flow equations of meshed networks. IEEE Trans Power Syst 22(4):2285–2286
go back to reference Jabr R (2008) Optimal power flow using an extended conic quadratic formulation. IEEE Trans Power Syst 23(3):1000–1008 Jabr R (2008) Optimal power flow using an extended conic quadratic formulation. IEEE Trans Power Syst 23(3):1000–1008
go back to reference Jabr R (2012) Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans Power Syst 27(2):1138–1139 Jabr R (2012) Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans Power Syst 27(2):1138–1139
go back to reference Khanabadi M, Ghasemi H (2011) Transmission congestion management through optimal transmission switching. In: 2011 IEEE power and energy society general meeting, pp 1–5 Khanabadi M, Ghasemi H (2011) Transmission congestion management through optimal transmission switching. In: 2011 IEEE power and energy society general meeting, pp 1–5
go back to reference Khanabadi M, Ghasemi H, Doostizadeh M (2013) Optimal transmission switching considering voltage security and N-1 contingency analysis. IEEE Trans Power Syst 28(1):542–550 Khanabadi M, Ghasemi H, Doostizadeh M (2013) Optimal transmission switching considering voltage security and N-1 contingency analysis. IEEE Trans Power Syst 28(1):542–550
go back to reference Kocuk B, Dey S, Sun XA (2016) Strong SOCP relaxations for the optimal power flow problem. Oper Res 64(6):1177–1196 Kocuk B, Dey S, Sun XA (2016) Strong SOCP relaxations for the optimal power flow problem. Oper Res 64(6):1177–1196
go back to reference Kocuk B, Dey S, Sun XA (2017) New formulation and strong MISOCP relaxations for AC optimal transmission switching problem. IEEE Trans Power Syst 32(6):4161–4170 Kocuk B, Dey S, Sun XA (2017) New formulation and strong MISOCP relaxations for AC optimal transmission switching problem. IEEE Trans Power Syst 32(6):4161–4170
go back to reference Kocuk B, Dey S, Sun XA (2018) Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem. Math Program Comput 10(4):557–569 Kocuk B, Dey S, Sun XA (2018) Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem. Math Program Comput 10(4):557–569
go back to reference Kuang X, Ghaddar B, Naoum-Sawaya J, Zuluaga L (2016) Alternative LP and SOCP hierarchies for ACOPF problems. IEEE Trans Power Syst 32(4):2828–2836 Kuang X, Ghaddar B, Naoum-Sawaya J, Zuluaga L (2016) Alternative LP and SOCP hierarchies for ACOPF problems. IEEE Trans Power Syst 32(4):2828–2836
go back to reference Lan T, Zhou Z, Huang GM (2018) Modeling and numerical analysis of stochastic optimal transmission switching with DCOPF and ACOPF. IFAC-PapersOnLine 51(28):126–131 Lan T, Zhou Z, Huang GM (2018) Modeling and numerical analysis of stochastic optimal transmission switching with DCOPF and ACOPF. IFAC-PapersOnLine 51(28):126–131
go back to reference Lasserre J (2009) Moments and sums of squares for polynomial optimization and related problems. J Glob Optim 45:39–61 Lasserre J (2009) Moments and sums of squares for polynomial optimization and related problems. J Glob Optim 45:39–61
go back to reference Lavaei J, Low S (2012) Zero duality gap in optimal power flow problem. IEEE Trans Power Syst 27(1):92–107 Lavaei J, Low S (2012) Zero duality gap in optimal power flow problem. IEEE Trans Power Syst 27(1):92–107
go back to reference Lesieutre BC, Molzahn DK, Borden AR, DeMarco CL (2011) Examining the limits of the application of semidefinite programming to power flow problems. In: 2011 49th annual allerton conference on communication, control, and computing (Allerton), pp 1492–1499 Lesieutre BC, Molzahn DK, Borden AR, DeMarco CL (2011) Examining the limits of the application of semidefinite programming to power flow problems. In: 2011 49th annual allerton conference on communication, control, and computing (Allerton), pp 1492–1499
go back to reference Liu X, Li Z (2017) False data attacks against AC state estimation with incomplete network information. IEEE Trans Smart Grid 8(5):2239–2248 Liu X, Li Z (2017) False data attacks against AC state estimation with incomplete network information. IEEE Trans Smart Grid 8(5):2239–2248
go back to reference Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the international symposium of computer-aided control systems design, volume 1 of CACSD, Piscataway. IEEE Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the international symposium of computer-aided control systems design, volume 1 of CACSD, Piscataway. IEEE
go back to reference Low S (2013) Convex relaxation of optimal power flow: a tutorial. In: 2013 IREP symposium bulk power system dynamics and control—IX optimization, security and control of the emerging power grid, pp 1–15 Low S (2013) Convex relaxation of optimal power flow: a tutorial. In: 2013 IREP symposium bulk power system dynamics and control—IX optimization, security and control of the emerging power grid, pp 1–15
go back to reference Low S (2014a) Convex relaxation of optimal power flow—part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27 Low S (2014a) Convex relaxation of optimal power flow—part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27
go back to reference Low S (2014b) Convex relaxation of optimal power flow—part II: exactness. IEEE Trans Control Netw Syst 1(2):177–189 Low S (2014b) Convex relaxation of optimal power flow—part II: exactness. IEEE Trans Control Netw Syst 1(2):177–189
go back to reference Lu M, Nagarajan H, Yamangil E, Bent R, Backhaus S, Barnes A (2018) Optimal transmission line switching under geomagnetic disturbances. IEEE Trans Power Syst 33(3):2539–2550 Lu M, Nagarajan H, Yamangil E, Bent R, Backhaus S, Barnes A (2018) Optimal transmission line switching under geomagnetic disturbances. IEEE Trans Power Syst 33(3):2539–2550
go back to reference Madani R, Ashraphijuo M, Lavaei J (2016) Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans Power Syst 31(2):1297–1307 Madani R, Ashraphijuo M, Lavaei J (2016) Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans Power Syst 31(2):1297–1307
go back to reference McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math Program 10:146–175 McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math Program 10:146–175
go back to reference Messine F (1997) Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution de problèmes avec contraintes (in French). Ph.D. thesis, Institut National Polytechnique de Toulouse Messine F (1997) Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution de problèmes avec contraintes (in French). Ph.D. thesis, Institut National Polytechnique de Toulouse
go back to reference Meurer A, Smith C, Paprocki M, Čertík O, Kirpichev S, Rocklin M, Kumar A, Ivanov S, Moore J, Singh S, Rathnayake T, Vig S, Granger B, Muller R, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry M, Terrel A, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103 Meurer A, Smith C, Paprocki M, Čertík O, Kirpichev S, Rocklin M, Kumar A, Ivanov S, Moore J, Singh S, Rathnayake T, Vig S, Granger B, Muller R, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry M, Terrel A, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103
go back to reference Molzahn DK, Hiskens IA (2014) Moment-based relaxation of the optimal power flow problem. In: 2014 power systems computation conference, pp 1–7 Molzahn DK, Hiskens IA (2014) Moment-based relaxation of the optimal power flow problem. In: 2014 power systems computation conference, pp 1–7
go back to reference Molzahn DK, Hiskens IA (2015) Sparsity-exploiting moment-based relaxations of the optimal power flow problem. IEEE Trans Power Syst 30(6):3168–3180 Molzahn DK, Hiskens IA (2015) Sparsity-exploiting moment-based relaxations of the optimal power flow problem. IEEE Trans Power Syst 30(6):3168–3180
go back to reference Molzahn DK, Hiskens IA (2019) A survey of relaxations and approximations of the power flow equations. Found Trends® Electric Energy Syst 4(1–2):1–221 Molzahn DK, Hiskens IA (2019) A survey of relaxations and approximations of the power flow equations. Found Trends® Electric Energy Syst 4(1–2):1–221
go back to reference Molzahn DK, Holzer JT, Lesieutre BC, DeMarco CL (2013) Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans Power Syst 28(4):3987–3998 Molzahn DK, Holzer JT, Lesieutre BC, DeMarco CL (2013) Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans Power Syst 28(4):3987–3998
go back to reference Molzahn DK, Lesieutre BC, DeMarco CL (2014) A sufficient condition for global optimality of solutions to the optimal power flow problem. IEEE Trans Power Syst 29(2):978–979 Molzahn DK, Lesieutre BC, DeMarco CL (2014) A sufficient condition for global optimality of solutions to the optimal power flow problem. IEEE Trans Power Syst 29(2):978–979
go back to reference Momoh JA, El-Hawary ME, Adapa R (1999a) A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans Power Syst 14(1):96–104 Momoh JA, El-Hawary ME, Adapa R (1999a) A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans Power Syst 14(1):96–104
go back to reference Momoh JA, El-Hawary ME, Adapa R (1999b) A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans Power Syst 14(1):105–111 Momoh JA, El-Hawary ME, Adapa R (1999b) A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans Power Syst 14(1):105–111
go back to reference Monticelli A (1999) Power flow equations. Springer, Boston, pp 63–102 Monticelli A (1999) Power flow equations. Springer, Boston, pp 63–102
go back to reference Mosek ApS (2016) The mosek manual, Version 8 Mosek ApS (2016) The mosek manual, Version 8
go back to reference Potluri T, Hedman KW (2012) Impacts of topology control on the ACOPF. In: 2012 IEEE power and energy society general meeting, pp 1–7 Potluri T, Hedman KW (2012) Impacts of topology control on the ACOPF. In: 2012 IEEE power and energy society general meeting, pp 1–7
go back to reference Putinar M, Lasserre JB (2011) Positive polynomials and their applications (book review). Found Comput Math 11(4):489–497 Putinar M, Lasserre JB (2011) Positive polynomials and their applications (book review). Found Comput Math 11(4):489–497
go back to reference Rider MJ, Paucar VL, Garcia AV (2004) Enhanced higher-order interior-point method to minimise active power losses in electric energy systems. IEE Proc Gener Transm Distrib 151(4):517–525 Rider MJ, Paucar VL, Garcia AV (2004) Enhanced higher-order interior-point method to minimise active power losses in electric energy systems. IEE Proc Gener Transm Distrib 151(4):517–525
go back to reference Ruiz M, Maeght J, Marié A, Panciatici P, Renaud A (2014) A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility. In: Proceedings of the power systems computation conference, volume 18 of PSCC, Piscataway. IEEE Ruiz M, Maeght J, Marié A, Panciatici P, Renaud A (2014) A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility. In: Proceedings of the power systems computation conference, volume 18 of PSCC, Piscataway. IEEE
go back to reference Sahinidis NV, Tawarmalani M (2005) BARON 7.2.5: global optimization of mixed-integer nonlinear programs, user’s manual Sahinidis NV, Tawarmalani M (2005) BARON 7.2.5: global optimization of mixed-integer nonlinear programs, user’s manual
go back to reference Salgado E, Gentile C, Liberti L (2018a) Perspective cuts for the ACOPF with generators. In: Daniele P, Scrimali L (eds) New trends in emerging complex real-life problems, volume 1 of AIRO series. Springer, New York, pp 451–461 Salgado E, Gentile C, Liberti L (2018a) Perspective cuts for the ACOPF with generators. In: Daniele P, Scrimali L (eds) New trends in emerging complex real-life problems, volume 1 of AIRO series. Springer, New York, pp 451–461
go back to reference Salgado E, Scozzari A, Tardella F, Liberti L (2018b) Alternating current optimal power flow with generator selection. In: Lee J, Rinaldi G, Mahjoub R (eds) Combinatorial optimization (proceedings of ISCO 2018), volume 10856 of LNCS, pp 364–375 Salgado E, Scozzari A, Tardella F, Liberti L (2018b) Alternating current optimal power flow with generator selection. In: Lee J, Rinaldi G, Mahjoub R (eds) Combinatorial optimization (proceedings of ISCO 2018), volume 10856 of LNCS, pp 364–375
go back to reference Shectman JP, Sahinidis NV (1998) A finite algorithm for global minimization of separable concave programs. J Glob Optim 12:1–36 Shectman JP, Sahinidis NV (1998) A finite algorithm for global minimization of separable concave programs. J Glob Optim 12:1–36
go back to reference Sherali HD, Alameddine A (1992) A new reformulation-linearization technique for bilinear programming problems. J Glob Optim 2:379–410 Sherali HD, Alameddine A (1992) A new reformulation-linearization technique for bilinear programming problems. J Glob Optim 2:379–410
go back to reference Soltan S, Zussman G (July 2017) Power grid state estimation after a cyber-physical attack under the AC power flow model. In: 2017 IEEE power energy society general meeting, pp 1–5 Soltan S, Zussman G (July 2017) Power grid state estimation after a cyber-physical attack under the AC power flow model. In: 2017 IEEE power energy society general meeting, pp 1–5
go back to reference Soroush M, Fuller JD (2014) Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF. IEEE Trans Power Syst 29(2):924–932 Soroush M, Fuller JD (2014) Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF. IEEE Trans Power Syst 29(2):924–932
go back to reference Sridhar S, Hahn A, Govindarasu M (2012) Cyber-physical system security for the electric power grid. Proc IEEE 100(1):210–224 Sridhar S, Hahn A, Govindarasu M (2012) Cyber-physical system security for the electric power grid. Proc IEEE 100(1):210–224
go back to reference The MathWorks, Inc., Natick, MA (2017) MATLAB R2017a The MathWorks, Inc., Natick, MA (2017) MATLAB R2017a
go back to reference Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE Trans Power Apparatus Syst PAS–86(11):1449–1460 Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE Trans Power Apparatus Syst PAS–86(11):1449–1460
go back to reference Torres GL, Quintana VH (1998) An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans Power Syst 13(4):1211–1218 Torres GL, Quintana VH (1998) An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans Power Syst 13(4):1211–1218
go back to reference Van Ness JE, Griffin JH (1961) Elimination methods for load-flow studies. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):299–302 Van Ness JE, Griffin JH (1961) Elimination methods for load-flow studies. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):299–302
go back to reference van Rossum G et al. (2019) Python language reference, version 3. Python Software Foundation van Rossum G et al. (2019) Python language reference, version 3. Python Software Foundation
go back to reference Wang H, Murillo-Sánchez C, Zimmermann R, Thomas R (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193 Wang H, Murillo-Sánchez C, Zimmermann R, Thomas R (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193
go back to reference Wei H, Sasaki H, Kubokawa J, Yokoyama R (1998) An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst 13(3):870–877 Wei H, Sasaki H, Kubokawa J, Yokoyama R (1998) An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst 13(3):870–877
go back to reference Zamora JM, Grossmann IE (1999) A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J Glob Optim 14:217–249 Zamora JM, Grossmann IE (1999) A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J Glob Optim 14:217–249
go back to reference Zhao B, Hu Z, Zhou Q, Zhang H, Song Y (2019) Optimal transmission switching to eliminate voltage violations during light-load periods using decomposition approach. J Mod Power Syst Clean Energy 7(2):297–308 Zhao B, Hu Z, Zhou Q, Zhang H, Song Y (2019) Optimal transmission switching to eliminate voltage violations during light-load periods using decomposition approach. J Mod Power Syst Clean Energy 7(2):297–308
go back to reference Zimmermann R, Murillo-Sánchez C (2018) MatPower 7.0b1 user’s manual. Power Systems Engineering Research Center Zimmermann R, Murillo-Sánchez C (2018) MatPower 7.0b1 user’s manual. Power Systems Engineering Research Center
go back to reference Zimmermann R, Murillo-Sanchez C, Thomas R (2010) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19 Zimmermann R, Murillo-Sanchez C, Thomas R (2010) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19
Metadata
Title
Mathematical programming formulations for the alternating current optimal power flow problem
Authors
Dan Bienstock
Mauro Escobar
Claudio Gentile
Leo Liberti
Publication date
15-09-2020
Publisher
Springer Berlin Heidelberg
Published in
4OR / Issue 3/2020
Print ISSN: 1619-4500
Electronic ISSN: 1614-2411
DOI
https://doi.org/10.1007/s10288-020-00455-w

Other articles of this Issue 3/2020

4OR 3/2020 Go to the issue

Premium Partners