Skip to main content
Top

2017 | OriginalPaper | Chapter

8. Maximum Power Point Tracking (MPPT) Algorithms for Photovoltaic Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solar energy have become a challenging area among other renewable energy sources (RESs) since the photovoltaic (PV) systems have the advantages of not causing pollution, having low maintenance, and long-lasting operation life. Besides these advantages, a PV system has several drawbacks such as considerably higher installation cost comparing some other RESs, and limited efficiency ranges between 9–18%. The feasibility analyses have a great role in order to determine the most appropriate plant site before installation. On the other hand, the operating analyses and improvements based on maximum power point tracking (MPPT) are quite important to increase the harvested total energy. The intermittent characteristic and perturbing power curve of a PV module is one of the most important defects that should be tackled to increase the generation efficiency. The power-voltage (P-V) and current-voltage (I-V) curves are main efficiency indicators of a PV system that exhibit nonlinear characteristics in its natural structure. Furthermore, the generated maximum power with a PV panel depends on two main quantities of temperature and irradiation. However, it is possible to increase the generated power up to maximum rates by MPPT algorithms. This chapter introduces most widely used algorithms respecting to their implementation and utilization properties. The indirect, direct, and computational methods are presented considering their advantages and disadvantages. The conventional and novel algorithms are explained with flowcharts and analytical details in order to provide clear comparison. The artificial methods are expressed in the last section where fuzzy logic, artificial intelligence, and optimization-based approaches are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Twidell J, Weir T (2006) Renewable energy sources. Taylor & Francis, London ISBN 0-419-25330-0 Twidell J, Weir T (2006) Renewable energy sources. Taylor & Francis, London ISBN 0-419-25330-0
2.
go back to reference Kabalcı E, Kabalcı Y, Develi I (2012) Int J Electr Power Energy Syst 34:19–28CrossRef Kabalcı E, Kabalcı Y, Develi I (2012) Int J Electr Power Energy Syst 34:19–28CrossRef
3.
go back to reference Masters GM (2004) Renewable and efficient electric power systems. Wiley-IEEE Press. ISBN: 13: 978-0471280606 Masters GM (2004) Renewable and efficient electric power systems. Wiley-IEEE Press. ISBN: 13: 978-0471280606
4.
go back to reference Colak I, Kabalci E (2014) Chapter 7-Control methods applied in renewable energy, use, operation and maintenance of renewable energy systems. Springer, pp 205–246. doi:10.1007/978-3-319-03224-5_7. ISBN: 978-3-319-03224-5 Colak I, Kabalci E (2014) Chapter 7-Control methods applied in renewable energy, use, operation and maintenance of renewable energy systems. Springer, pp 205–246. doi:10.​1007/​978-3-319-03224-5_​7. ISBN: 978-3-319-03224-5
5.
go back to reference Zeman M (2014) Chapter 9-Photovoltaic systems, Delft University of Technology Zeman M (2014) Chapter 9-Photovoltaic systems, Delft University of Technology
6.
go back to reference Hersch P, Zweibel K (1982) Basic photovoltaic principles and methods, SERI/SP-290-1448 solar information module 6213. Golden, Colorado Hersch P, Zweibel K (1982) Basic photovoltaic principles and methods, SERI/SP-290-1448 solar information module 6213. Golden, Colorado
7.
go back to reference Gray JL (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, West Sussex, pp 61–112 Gray JL (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, West Sussex, pp 61–112
8.
go back to reference Kabalcı E, Gokkus G, Gorgun A (2015) 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28 Kabalcı E, Gokkus G, Gorgun A (2015) 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28
9.
go back to reference Lineykin S, Averbukh M, Kuperman A (2014) IEEE Trans Ind Electron 61:6785–6793CrossRef Lineykin S, Averbukh M, Kuperman A (2014) IEEE Trans Ind Electron 61:6785–6793CrossRef
10.
go back to reference Kadri R, Gaubert JP, Champenois G (2012) IEEE Trans Power Electron 27:1249–1258CrossRef Kadri R, Gaubert JP, Champenois G (2012) IEEE Trans Power Electron 27:1249–1258CrossRef
11.
go back to reference d’Alessandro V, Guerriero P, Daliento S, Gargiulo M (2011) Solid State Electron 63:130–136 d’Alessandro V, Guerriero P, Daliento S, Gargiulo M (2011) Solid State Electron 63:130–136
12.
go back to reference Tian H, David F, Ellis K, Muljadi E, Jenkins P (2012) Sol Energy 86:2695–2706CrossRef Tian H, David F, Ellis K, Muljadi E, Jenkins P (2012) Sol Energy 86:2695–2706CrossRef
14.
go back to reference Radjai T, Rahmani L, Mekhilef S, Gaubert JP (2014) Sol Energy 110:325–337CrossRef Radjai T, Rahmani L, Mekhilef S, Gaubert JP (2014) Sol Energy 110:325–337CrossRef
15.
16.
go back to reference Mohanty P, Bhuvaneswari G, Balasubramanian R, Dhaliwal NK (2014) Renew Sustain Energy Rev 38:581–593CrossRef Mohanty P, Bhuvaneswari G, Balasubramanian R, Dhaliwal NK (2014) Renew Sustain Energy Rev 38:581–593CrossRef
17.
go back to reference Bendib B, Krim F, Belmili H, Almi MF, Boulouma S (2014) Energy Procedia 50:383–392CrossRef Bendib B, Krim F, Belmili H, Almi MF, Boulouma S (2014) Energy Procedia 50:383–392CrossRef
18.
19.
go back to reference Jiang J, Su YL, Shieh J, Kuo K, Lin T, Lin T, Fang W, Chou J, Wang J (2014) Appl Energy 124:309–324CrossRef Jiang J, Su YL, Shieh J, Kuo K, Lin T, Lin T, Fang W, Chou J, Wang J (2014) Appl Energy 124:309–324CrossRef
20.
go back to reference Zheng H (2013) Solar photovoltaic energy generation and conversion—from devices to grid integration. PhD dissertation, Department of Electrical and Computer Engineering, Graduate School of The University of Alabama, Tuscaloosa, Alabama Zheng H (2013) Solar photovoltaic energy generation and conversion—from devices to grid integration. PhD dissertation, Department of Electrical and Computer Engineering, Graduate School of The University of Alabama, Tuscaloosa, Alabama
21.
go back to reference Lorenzani E, Franceschini G, Bellini A, Tassoni C (2014) Chapter 6-Single-phase grid connected converters for photovoltaic plants, renewable energy. In: Hammons TJ (ed) InTech. ISBN: 978-953-7619-52-7 Lorenzani E, Franceschini G, Bellini A, Tassoni C (2014) Chapter 6-Single-phase grid connected converters for photovoltaic plants, renewable energy. In: Hammons TJ (ed) InTech. ISBN: 978-953-7619-52-7
23.
24.
go back to reference Sivakumar P, Kader AA, Kaliavaradhan Y, Arutchelvi M (2015) Renew Energy 81:543–550CrossRef Sivakumar P, Kader AA, Kaliavaradhan Y, Arutchelvi M (2015) Renew Energy 81:543–550CrossRef
25.
26.
go back to reference Dolara A, Faranda R, Leva SJ (2009) Electromagn Anal Appl 3:152–162 Dolara A, Faranda R, Leva SJ (2009) Electromagn Anal Appl 3:152–162
27.
go back to reference Faranda R, Leva S; Maugeri V (2008) Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century, 20–24 July 2008, pp 1–6 Faranda R, Leva S; Maugeri V (2008) Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century, 20–24 July 2008, pp 1–6
28.
go back to reference Faranda R, Leva S (2008) WSEAS Trans Power Syst 3:446–455 Faranda R, Leva S (2008) WSEAS Trans Power Syst 3:446–455
29.
go back to reference Onat N (2010) Recent developments in maximum power point tracking technologies for photovoltaic systems. Int J Photoenergy 1:1–11 Onat N (2010) Recent developments in maximum power point tracking technologies for photovoltaic systems. Int J Photoenergy 1:1–11
30.
go back to reference Park M, Yu K (2004) In: 30th annual conference of IEEE industrial electronics society, pp 2040–2045 Park M, Yu K (2004) In: 30th annual conference of IEEE industrial electronics society, pp 2040–2045
31.
go back to reference Coelho RF, Concer FM, Martins DC (2010) 2010 IEEE international conference on sustainable energy technologies (ICSET), pp 1–6 Coelho RF, Concer FM, Martins DC (2010) 2010 IEEE international conference on sustainable energy technologies (ICSET), pp 1–6
34.
go back to reference Kabalci E, Kabalci Y, Canbaz R, Gokkus G (2015) 4th international conference on renewable energy research and applications (ICRERA 2015), Palermo, Italy, 22–25 November 2015 Kabalci E, Kabalci Y, Canbaz R, Gokkus G (2015) 4th international conference on renewable energy research and applications (ICRERA 2015), Palermo, Italy, 22–25 November 2015
35.
go back to reference Kabalci E, Gokkus G, Gorgun A (2015) ECAI 2015 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28 Kabalci E, Gokkus G, Gorgun A (2015) ECAI 2015 7th international conference electronics, computers and artificial intelligence, Bucharest, Romania, 25–27 June 2015, pp SG23–SG28
36.
go back to reference Sea TY, Ka JS, Lee, CU, Chung DH (2013) 13th international conference on control, automation and systems (ICCAS 2013). IEEE Sea TY, Ka JS, Lee, CU, Chung DH (2013) 13th international conference on control, automation and systems (ICCAS 2013). IEEE
38.
go back to reference Hsieh GC, Hsieh H, Tsai CY, Wang CH (2013) IEEE Trans Power Electron 28:2895–2911CrossRef Hsieh GC, Hsieh H, Tsai CY, Wang CH (2013) IEEE Trans Power Electron 28:2895–2911CrossRef
39.
go back to reference Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) IEEE J Photovoltaics 3:1070–1078CrossRef Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) IEEE J Photovoltaics 3:1070–1078CrossRef
41.
go back to reference Mohd Zainuri MAA, Mohd Radzi MA, Soh AC, Rahim NA (2014) IET Renew Power Gener 8:183–194CrossRef Mohd Zainuri MAA, Mohd Radzi MA, Soh AC, Rahim NA (2014) IET Renew Power Gener 8:183–194CrossRef
43.
44.
go back to reference El Khateb A, Abd Rahim N, Selvaraj J, Uddin MN (2014) IEEE Trans Ind Appl 50:2349–2358CrossRef El Khateb A, Abd Rahim N, Selvaraj J, Uddin MN (2014) IEEE Trans Ind Appl 50:2349–2358CrossRef
46.
go back to reference Kofinas P, Dounis AI, Papadakis G, Assimakopoulos MN (2015) Energy Build 90:51–64CrossRef Kofinas P, Dounis AI, Papadakis G, Assimakopoulos MN (2015) Energy Build 90:51–64CrossRef
47.
go back to reference Khanaki R, Radzi MAM, Marhaban MH (2013) In: IEEE conference on clean energy and technology (CEAT 2013), pp 287–292 Khanaki R, Radzi MAM, Marhaban MH (2013) In: IEEE conference on clean energy and technology (CEAT 2013), pp 287–292
48.
go back to reference Messalti S, Harrag AG, Loukriz AE (2015) In: 6th international renewable energy congress (IREC 2015), pp 1–6 Messalti S, Harrag AG, Loukriz AE (2015) In: 6th international renewable energy congress (IREC 2015), pp 1–6
49.
go back to reference Shi J, Zhang W, Zhang Y, Xue F, Yang T (2015) Electr Power Syst Res 123:100–107CrossRef Shi J, Zhang W, Zhang Y, Xue F, Yang T (2015) Electr Power Syst Res 123:100–107CrossRef
50.
go back to reference Mirhassani SM, Golroodbari SZM, Mekhilef S (2015) Int J Electr Power Energy Syst 64:761–770CrossRef Mirhassani SM, Golroodbari SZM, Mekhilef S (2015) Int J Electr Power Energy Syst 64:761–770CrossRef
51.
go back to reference Liu Y, Huang S, Huang J, Liang W (2012) IEEE Trans Energy Convers 27:1027–1035CrossRef Liu Y, Huang S, Huang J, Liang W (2012) IEEE Trans Energy Convers 27:1027–1035CrossRef
52.
53.
go back to reference Ishaque K, Salam Z (2013) IEEE Trans Industr Electron 60:3195–3206 Ishaque K, Salam Z (2013) IEEE Trans Industr Electron 60:3195–3206
Metadata
Title
Maximum Power Point Tracking (MPPT) Algorithms for Photovoltaic Systems
Author
Ersan Kabalci
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49875-1_8