Skip to main content
Top

2022 | OriginalPaper | Chapter

Measuring Cool Touch of Key Sports Performance Apparel T-Shirt Materials Using a Modified Transient Plane Source (MTPS) Sensor to Inform Future Technology Development

Authors : Susan L. Sokolowski, Emily Karolidis, Arya Hakimian, Sarah Ackermann

Published in: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sports performance apparel industry leads the effort of innovating materials to keep athletes cool while training and competing. Recently there is a trend where sports product manufacturers seek to develop materials with a cool touch. Cool touch materials can provide an athlete next-to-skin comfort but can also influence point-of-purchase decisions and be used as a marketing tool—as the consumer can feel for themselves the cool-touch benefit. There are two key methods used to measure cool touch. The first, Q-Max, provides values of heat flux, whereas the Modified Transient Plane Source (MTPS) measures effusivity. This paper reviews considerations for the sports apparel industry when collecting performance metrics from materials, distinguishing procedural details of each cool touch measurement methodology. A case study was subsequently conducted using a MTPS sensor to measure cool touch for eight common sport T-shirt materials and the influence of weight and thickness. When cool touch is coupled with other sport material performance characteristics (e.g., anti-cling, moisture transfer, air permeability) manufacturers have the potential of creating their own intellectual property and communicating a competitive point of difference in the marketplace.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
10.
go back to reference Kawabata S, Akagi Y (1977) Relation between thermal feeling and thermal absorption property of clothing fabric. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 30:13–22CrossRef Kawabata S, Akagi Y (1977) Relation between thermal feeling and thermal absorption property of clothing fabric. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 30:13–22CrossRef
11.
go back to reference Yoneda M, Kawabata S (1983) Analysis of transient heat conduction and its applications—Part 1: the fundamental analysis and applications to thermal conductivity and thermal diffusivity measurements. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 29(4):73–83 Yoneda M, Kawabata S (1983) Analysis of transient heat conduction and its applications—Part 1: the fundamental analysis and applications to thermal conductivity and thermal diffusivity measurements. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 29(4):73–83
12.
go back to reference Yoneda M, Kawabata S (1985) Analysis of transient heat conduction and its applications—Part 2: a theoretical analysis of the relationship between warm/cool feeling and transient heat conduction in skin. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 31(4):79–85 Yoneda M, Kawabata S (1985) Analysis of transient heat conduction and its applications—Part 2: a theoretical analysis of the relationship between warm/cool feeling and transient heat conduction in skin. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 31(4):79–85
13.
go back to reference Yoneda M, Kawabata S (1988) Analysis of transient heat conduction and its applications—Part 3: an analysis of two-layered body problem. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 34(1):1–6 Yoneda M, Kawabata S (1988) Analysis of transient heat conduction and its applications—Part 3: an analysis of two-layered body problem. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 34(1):1–6
14.
go back to reference Hes L, Dolezal I (1989) New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 42(8):72–75 Hes L, Dolezal I (1989) New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (J Textile Mach Soc Jpn) 42(8):72–75
18.
go back to reference Blaine RL (2018) In search of thermal effusivity reference materials. J Therm Anal Calorim 132(2):1419–1422CrossRef Blaine RL (2018) In search of thermal effusivity reference materials. J Therm Anal Calorim 132(2):1419–1422CrossRef
19.
go back to reference Mathis N (2000) TC probe application: measuring sensory warmth. research, product development & manufacturing, B19 Mathis N (2000) TC probe application: measuring sensory warmth. research, product development & manufacturing, B19
20.
go back to reference Emanuel M (2001) Effusivity Sensor Package (ESP) system for process monitoring and control. Thermal Conductivity 26/Thermal Expansion 14. Eds. Ralph B. Dinwiddie, Mary Anne White, David L. McElroy, pp 256–268 Emanuel M (2001) Effusivity Sensor Package (ESP) system for process monitoring and control. Thermal Conductivity 26/Thermal Expansion 14. Eds. Ralph B. Dinwiddie, Mary Anne White, David L. McElroy, pp 256–268
21.
go back to reference Mathis NE (2000) New transient non-destructive technique measures thermal effusivity and diffusivity. Thermal Conductivity 25/Thermal Expansion 13. Eds. Ctirad Uher and Donald Morelli 3–14. Mathis NE (2000) New transient non-destructive technique measures thermal effusivity and diffusivity. Thermal Conductivity 25/Thermal Expansion 13. Eds. Ctirad Uher and Donald Morelli 3–14.
22.
go back to reference American Society of Testing and Materials (2016) ASTM D7984: standard test method for measurement of thermal effusivity of fabrics using a modified transient plane source (MTPS) Instrument. ASTM Int 07(02):1–5 American Society of Testing and Materials (2016) ASTM D7984: standard test method for measurement of thermal effusivity of fabrics using a modified transient plane source (MTPS) Instrument. ASTM Int 07(02):1–5
23.
go back to reference American Society of Testing and Materials (In-Press) ILS report, RR# D13–2000 American Society of Testing and Materials (In-Press) ILS report, RR# D13–2000
24.
go back to reference American Society of Testing and Materials (1996) ASTM D3776: standard test methods for mass per unit area (weight) of fabric option. ASTM Int 07(01):1–5 American Society of Testing and Materials (1996) ASTM D3776: standard test methods for mass per unit area (weight) of fabric option. ASTM Int 07(01):1–5
25.
go back to reference American Society of Testing and Materials (2019) ASTM D1777: standard test method for thickness of textile materials. ASTM Int 07(01):1–5 American Society of Testing and Materials (2019) ASTM D1777: standard test method for thickness of textile materials. ASTM Int 07(01):1–5
26.
go back to reference American Society of Testing and Materials (2020) ASTM D1776M–20: standard practice for conditioning and testing textiles. ASTM Int 07(01):1–5 American Society of Testing and Materials (2020) ASTM D1776M–20: standard practice for conditioning and testing textiles. ASTM Int 07(01):1–5
Metadata
Title
Measuring Cool Touch of Key Sports Performance Apparel T-Shirt Materials Using a Modified Transient Plane Source (MTPS) Sensor to Inform Future Technology Development
Authors
Susan L. Sokolowski
Emily Karolidis
Arya Hakimian
Sarah Ackermann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92381-5_126

Premium Partners