Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Mechanical Characterization of Cellulose Nanofibril Materials Made by Additive Manufacturing

Authors : Lisa M. Mariani, John M. Considine, Kevin T. Turner

Published in: Mechanics of Additive and Advanced Manufacturing, Volume 8

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanomaterials have high specific stiffness and strength, are optically transparent, and are biodegradable, making them an attractive building block for bulk materials. The overall dimensions of neat bulk cellulose nanofibril (CNF) materials is significantly limited by the development of residual stresses generated during the drying process, when the source CNF is 1.0 wt.% in water or less, or by agglomeration, when the source CNF is greater than 1.0 wt.%. Here, we overcome these issues by producing CNF films and structures by additive manufacturing (i.e., 3D printing) of a shear thinning aqueous CNF suspension onto hydrophobic substrates under controlled drying conditions. Films of enhanced thicknesses, greater than 80 μm, are achieved as a result of the multistep layer-by-layer manufacturing process. The mechanical properties of the resulting materials are characterized via nanoindentation and tensile testing. Nanoindentation is used primarily to map the mechanical properties and examine variations in properties spatially and through the thickness. Tensile testing, with strain measurement via digital image correlation, is used to characterize the bulk properties. Mechanical characterization is supported by additional characterization via atomic force, optical, and electron microscopy. This study demonstrates the ability to additively manufacture stiff, strong, uniform, and scalable cellulose nanofibril materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shatkin, J.A., Wegner, T.H., Bilek, E.M., Cowie, J.: Market projections of cellulose nanomaterial-enabled products − part 1: applications. Nanocellulose Mark. 13(5), 9–16 (2014) Shatkin, J.A., Wegner, T.H., Bilek, E.M., Cowie, J.: Market projections of cellulose nanomaterial-enabled products − part 1: applications. Nanocellulose Mark. 13(5), 9–16 (2014)
2.
go back to reference Isogai, A.: Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59(6), 449–459 (Sep. 2013)CrossRef Isogai, A.: Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59(6), 449–459 (Sep. 2013)CrossRef
3.
go back to reference Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F.: Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (Jan. 2012)CrossRef Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F.: Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (Jan. 2012)CrossRef
4.
go back to reference Aulin, C., Salazar-Alvarez, G., Lindström, T.: High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale. 4(20), 6622 (2012)CrossRef Aulin, C., Salazar-Alvarez, G., Lindström, T.: High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale. 4(20), 6622 (2012)CrossRef
5.
go back to reference Malho, J.M., Laaksonen, P., Walther, A., Ikkala, O., Linder, M.B.: Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromolecules. 13(4), 1093–1099 (2012)CrossRef Malho, J.M., Laaksonen, P., Walther, A., Ikkala, O., Linder, M.B.: Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromolecules. 13(4), 1093–1099 (2012)CrossRef
6.
go back to reference Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A.: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules. 162–165 (2009) Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A.: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules. 162–165 (2009)
7.
go back to reference Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., Berglund, L.A.: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interfaces. 4(2), 1043–1049 (2012)CrossRef Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., Berglund, L.A.: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interfaces. 4(2), 1043–1049 (2012)CrossRef
8.
go back to reference Wu, C.N., Saito, T., Fujisawa, S., Fukuzumi, H., Isogai, A.: Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules. 13(6), 1927–1932 (2012)CrossRef Wu, C.N., Saito, T., Fujisawa, S., Fukuzumi, H., Isogai, A.: Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules. 13(6), 1927–1932 (2012)CrossRef
9.
go back to reference Zhu, H., Zhu, S., Jia, Z., Parvinian, S., Li, Y., Vaaland, O., Hu, L., Li, T.: Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. 112(29), 8971–8976 (2015)CrossRef Zhu, H., Zhu, S., Jia, Z., Parvinian, S., Li, Y., Vaaland, O., Hu, L., Li, T.: Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. 112(29), 8971–8976 (2015)CrossRef
10.
go back to reference Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T.: Cellulose Nanopaper structures of high toughness. Biomacromolecules. 9(6), 1579–1585 (2008)CrossRef Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T.: Cellulose Nanopaper structures of high toughness. Biomacromolecules. 9(6), 1579–1585 (2008)CrossRef
11.
go back to reference Baez, C., Considine, J., Rowlands, R.: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose. 21(1), 347–356 (Jan. 2014)CrossRef Baez, C., Considine, J., Rowlands, R.: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose. 21(1), 347–356 (Jan. 2014)CrossRef
12.
go back to reference Marksteadt, K., Sundberg, J., Gatenholm, P.: 3D bioprinting of cellulose structures from an ionic liquid. 3D Print. Addit. Manuf. 1(3), 115–121 (2014)CrossRef Marksteadt, K., Sundberg, J., Gatenholm, P.: 3D bioprinting of cellulose structures from an ionic liquid. 3D Print. Addit. Manuf. 1(3), 115–121 (2014)CrossRef
13.
go back to reference Pattinson, S.W., Hart, A.J.: Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv. Mater. Technol. 2, 1600084 (2017)CrossRef Pattinson, S.W., Hart, A.J.: Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv. Mater. Technol. 2, 1600084 (2017)CrossRef
14.
go back to reference Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M.K., Gladman, A.S., Neels, A., Tingaut, P., Zimmermann, T., Lewis, J.A., Studart, A.R.: Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27(12), 1604619 (2017) Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M.K., Gladman, A.S., Neels, A., Tingaut, P., Zimmermann, T., Lewis, J.A., Studart, A.R.: Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27(12), 1604619 (2017)
15.
go back to reference Rees, A., Powell, L.C., Chinga-Carrasco, G., Gethin, D.T., Syverud, K., Hill, K.E., Thomas, D.W.: 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res. Int. 2015, 925757 (2014) Rees, A., Powell, L.C., Chinga-Carrasco, G., Gethin, D.T., Syverud, K., Hill, K.E., Thomas, D.W.: 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res. Int. 2015, 925757 (2014)
16.
go back to reference Hakansson, K.M.O., Henriksson, I.C., Pena Vazquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P., Gatenholm, P.: Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technol. 1, 1600096 (2016) Hakansson, K.M.O., Henriksson, I.C., Pena Vazquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P., Gatenholm, P.: Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technol. 1, 1600096 (2016)
Metadata
Title
Mechanical Characterization of Cellulose Nanofibril Materials Made by Additive Manufacturing
Authors
Lisa M. Mariani
John M. Considine
Kevin T. Turner
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95083-9_9

Premium Partners