Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

Mechanical Loading of Blood Cells in Turbulent Flow

Author : Nathan J. Quinlan

Published in: Computational Biomechanics for Medicine

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Blood cells are subjected to turbulent flow in some disease states and in cardiovascular devices. In general, the details of the microscale flow and stress on cells are unknown for these flows. This chapter is a discussion and review of efforts to identify simple parameters that can quantify the effects of turbulence on cells. It is shown that Reynolds stress and Kolmogorov scale alone are not adequate descriptors of the turbulent flow. The energy spectrum of turbulence must be considered also, so that cell loading at all length scales is properly represented. A deeper quantitative model will require understanding of two-phase flow effects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abe H, Kawamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. Trans ASME J Fluids Eng 123:382–393CrossRef Abe H, Kawamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. Trans ASME J Fluids Eng 123:382–393CrossRef
2.
go back to reference Antiga L, Steinman DA (2009) Rethinking turbulence in blood. Biorheology 46:77–81 Antiga L, Steinman DA (2009) Rethinking turbulence in blood. Biorheology 46:77–81
3.
go back to reference Bacher RP, Williams MC (1970) Hemolysis in capillary flow. J Lab Clin Med 76:485–496 Bacher RP, Williams MC (1970) Hemolysis in capillary flow. J Lab Clin Med 76:485–496
4.
go back to reference Bellofiore A, Quinlan NJ (2011) High-Resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann Biomed Eng 39:2417–2429CrossRef Bellofiore A, Quinlan NJ (2011) High-Resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann Biomed Eng 39:2417–2429CrossRef
5.
go back to reference Blackshear PL, Dorman FD, Steinbach JH, Maybach EJ, Singh A, Collingham RE (1966) Shear wall interaction and hemolysis. Trans Am Soc Artif Intern Organs 12:113–120 Blackshear PL, Dorman FD, Steinbach JH, Maybach EJ, Singh A, Collingham RE (1966) Shear wall interaction and hemolysis. Trans Am Soc Artif Intern Organs 12:113–120
6.
go back to reference Bradshaw P (1971) An introduction to turbulence and its measurement. Pergamon Press, OxfordMATH Bradshaw P (1971) An introduction to turbulence and its measurement. Pergamon Press, OxfordMATH
7.
go back to reference Davidson P (2004) A turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford Davidson P (2004) A turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford
8.
go back to reference De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259–290CrossRefMATH De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259–290CrossRefMATH
9.
go back to reference Dooley PN, Quinlan NJ (2009) Effect of eddy length scale on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37:2449–2458CrossRef Dooley PN, Quinlan NJ (2009) Effect of eddy length scale on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37:2449–2458CrossRef
10.
go back to reference Ellis JT, Wick TM, Yoganathan AP (1998) Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J Heart Valve Dis 7:376–386 Ellis JT, Wick TM, Yoganathan AP (1998) Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J Heart Valve Dis 7:376–386
11.
go back to reference Fischer TM (1978) The red cell as a fluid droplet: tank tread-Like motion of the human erythrocyte membrane in shear flow. Science 202:894–896CrossRef Fischer TM (1978) The red cell as a fluid droplet: tank tread-Like motion of the human erythrocyte membrane in shear flow. Science 202:894–896CrossRef
12.
go back to reference Forstrom RJ (1969) A new measure of erythrocyte membrane strength: the jet fragility test. Ph.D. Thesis, University of Minnesota Forstrom RJ (1969) A new measure of erythrocyte membrane strength: the jet fragility test. Ph.D. Thesis, University of Minnesota
13.
go back to reference Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297CrossRef Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297CrossRef
14.
go back to reference Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306 Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306
15.
go back to reference Girdhar G, Xenos M, Alemu Y, Chiu WC, Lynch BE, Jesty J, Einav S, Slepian MJ, Bluestein D (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One 7:e32463CrossRef Girdhar G, Xenos M, Alemu Y, Chiu WC, Lynch BE, Jesty J, Einav S, Slepian MJ, Bluestein D (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One 7:e32463CrossRef
16.
go back to reference Grigioni M, Caprari P, Tarzia A, D’Avenio G (2005) Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J Biomech 38:1557–1565CrossRef Grigioni M, Caprari P, Tarzia A, D’Avenio G (2005) Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J Biomech 38:1557–1565CrossRef
17.
go back to reference Hellums JD, Brown CH (1977) Blood cell damage by mechanical forces. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore Hellums JD, Brown CH (1977) Blood cell damage by mechanical forces. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore
18.
go back to reference Hund SJ, Antaki JF, Massoudi M (2010) On the representation of turbulent stresses for computing blood damage. Int J Eng Sci 48:1325–1331CrossRefMATH Hund SJ, Antaki JF, Massoudi M (2010) On the representation of turbulent stresses for computing blood damage. Int J Eng Sci 48:1325–1331CrossRefMATH
19.
go back to reference Heuser G, Opitz R (1980) A Coutte viscometer for short time shearing of blood. Biorheology 17:17–24 Heuser G, Opitz R (1980) A Coutte viscometer for short time shearing of blood. Biorheology 17:17–24
20.
go back to reference Jones SA (1995) A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann Biomed Eng 23:21–28CrossRef Jones SA (1995) A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann Biomed Eng 23:21–28CrossRef
21.
go back to reference Kameneva MV, Burgreen GW, Kono K, Repko B Antaki JF, Umezu M (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. Am Soc Artif Intern Organs J 50:418–423CrossRef Kameneva MV, Burgreen GW, Kono K, Repko B Antaki JF, Umezu M (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. Am Soc Artif Intern Organs J 50:418–423CrossRef
22.
go back to reference Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford
23.
go back to reference Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41:2551–2561CrossRef Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41:2551–2561CrossRef
24.
go back to reference Leverett LB, Hellums JD, Alfrey CP, Lynch EC (1972) Red blood cell damage by shear stress. Biophys J 12:257–273CrossRef Leverett LB, Hellums JD, Alfrey CP, Lynch EC (1972) Red blood cell damage by shear stress. Biophys J 12:257–273CrossRef
25.
go back to reference Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122:118–124CrossRef Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122:118–124CrossRef
26.
go back to reference Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34:1361–1364CrossRef Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34:1361–1364CrossRef
27.
28.
go back to reference Monty JP, Hutchins N, Ng HCH, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442CrossRefMATH Monty JP, Hutchins N, Ng HCH, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442CrossRefMATH
29.
go back to reference Nestor RM, Basa M, Lastiwka M, Quinlan NJ (2009) Extension of the finite volume particle method to viscous flow. J Comput Phys 228:1733–1749CrossRefMATHMathSciNet Nestor RM, Basa M, Lastiwka M, Quinlan NJ (2009) Extension of the finite volume particle method to viscous flow. J Comput Phys 228:1733–1749CrossRefMATHMathSciNet
30.
go back to reference Nevaril CG, Lynch EC, Alfrey CP, Hellums JD (1968) Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med 71:784–790 Nevaril CG, Lynch EC, Alfrey CP, Hellums JD (1968) Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med 71:784–790
31.
go back to reference Patrick M, Chen CY, Frakes D, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50:887–904CrossRef Patrick M, Chen CY, Frakes D, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50:887–904CrossRef
32.
go back to reference Peters A, Melchionna S, Kaxiras E, Lätt J, Sircar J, Bernaschi M, Bison M, Succi S (2010) Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC Peters A, Melchionna S, Kaxiras E, Lätt J, Sircar J, Bernaschi M, Bison M, Succi S (2010) Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC
33.
go back to reference Paul R, Apel J, Klaus S, Schügner F, Schwindke P, Reul H (2003) Shear stress related blood damage in laminar Couette flow. Artif Organs 27:517–529CrossRef Paul R, Apel J, Klaus S, Schügner F, Schwindke P, Reul H (2003) Shear stress related blood damage in laminar Couette flow. Artif Organs 27:517–529CrossRef
34.
go back to reference Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35:1347–1356CrossRef Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35:1347–1356CrossRef
35.
go back to reference Rahimian A, Lashuk I, Veerapaneni S, Chandramowlishwaran A, Malhotra D, Moon L, Sampath R, Shringarpure A, Vetter J, Vuduc R, Zorin D, Biros G (2010) Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC Rahimian A, Lashuk I, Veerapaneni S, Chandramowlishwaran A, Malhotra D, Moon L, Sampath R, Shringarpure A, Vetter J, Vuduc R, Zorin D, Biros G (2010) Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC
36.
go back to reference Rooney JA (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169: 869–871CrossRef Rooney JA (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169: 869–871CrossRef
37.
go back to reference Sallam AM, Hwang NHC (1984) Human red blood cells in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797 Sallam AM, Hwang NHC (1984) Human red blood cells in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797
38.
go back to reference Sutera SP, Joist JH (1992) Haematological effects of turbulent blood flow. In: Butchart EC, Bodnar E (eds) Thrombosis, embolism and bleeding. ICR Publishers, London Sutera SP, Joist JH (1992) Haematological effects of turbulent blood flow. In: Butchart EC, Bodnar E (eds) Thrombosis, embolism and bleeding. ICR Publishers, London
39.
go back to reference Sutera SP, Mehrjardi MH (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 15:1–10CrossRef Sutera SP, Mehrjardi MH (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 15:1–10CrossRef
40.
go back to reference Tran-Son-Tay R, Sutera SP, Zahalak GI, Rao PR (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys J 51:915–924CrossRef Tran-Son-Tay R, Sutera SP, Zahalak GI, Rao PR (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys J 51:915–924CrossRef
41.
go back to reference Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP (2002) An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J Biomech Eng 124:155–165CrossRef Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP (2002) An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J Biomech Eng 124:155–165CrossRef
42.
go back to reference Williams AR, Hughes DE, Nyborg WL (1970) Hemolysis near a transversely oscillating wire. Science 169:871–873CrossRef Williams AR, Hughes DE, Nyborg WL (1970) Hemolysis near a transversely oscillating wire. Science 169:871–873CrossRef
43.
go back to reference Wurzinger LJ, Opitz R, Eckstein (1986) Mechanical bloodtrauma. An overview. Angéiologie 38:81–97 Wurzinger LJ, Opitz R, Eckstein (1986) Mechanical bloodtrauma. An overview. Angéiologie 38:81–97
Metadata
Title
Mechanical Loading of Blood Cells in Turbulent Flow
Author
Nathan J. Quinlan
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0745-8_1