Skip to main content
Top
Published in: Journal of Materials Science 7/2019

07-01-2019 | Ceramics

Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3−δ with various porosities and pore sizes

Authors: Md. Nurul Islam, Wakako Araki, Yoshio Arai

Published in: Journal of Materials Science | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have investigated the mechanical properties of porous La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) under uniaxial compression. Porous LSCF samples containing polymethyl methacrylate pore former with different diameters (0.4, 1.5 and 10 µm) were examined. The porosity increases with the increase in pore former content, and it also slightly increases with the increase in pore former size. The average pore size is constant for the same size pore former regardless of the porosity, and it is smaller than the original pore former diameter. X-ray diffraction confirms that all the samples have a rhombohedral crystal structure. The samples contain ferroelastic domains and exhibit clear mechanical behavior related to the ferroelasticity under uniaxial compression. The initial modulus, critical stress and compressive fracture strength of the porous sample decrease with the increase in porosity and pore size, where the dependence on the pore size is most clear for the fracture strength. An empirical equation to estimate the fracture strength of porous LSCF is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alcock CB, Doshi RC, Shen Y (1992) Perovskite electrodes for sensors. Solid State Ion 51:281–289CrossRef Alcock CB, Doshi RC, Shen Y (1992) Perovskite electrodes for sensors. Solid State Ion 51:281–289CrossRef
2.
go back to reference Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 150:87–98CrossRef Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 150:87–98CrossRef
3.
go back to reference Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Proc 1:495–502CrossRef Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Proc 1:495–502CrossRef
4.
go back to reference Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150CrossRef Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150CrossRef
5.
go back to reference Olivier L, Haag S, Mirodatos C, Veen ACV (2009) Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catal Today 142:34–41CrossRef Olivier L, Haag S, Mirodatos C, Veen ACV (2009) Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catal Today 142:34–41CrossRef
6.
go back to reference Akin FT, Lin YS (2002) Controlled oxidative coupling of methane by ionic conducting ceramic membrane. Catal Lett 78:239–242CrossRef Akin FT, Lin YS (2002) Controlled oxidative coupling of methane by ionic conducting ceramic membrane. Catal Lett 78:239–242CrossRef
7.
go back to reference Wegmann M, Michen B, Luxbacher T, Fritsch J, Graule T (2008) Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Res 42:1726–1734CrossRef Wegmann M, Michen B, Luxbacher T, Fritsch J, Graule T (2008) Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Res 42:1726–1734CrossRef
8.
go back to reference Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Costa JCDD (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Costa JCDD (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef
9.
go back to reference Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1983) Electronic conductivity, Seebeck coefficient, and defect structure of La1−XSrXFeO3(x = 0.1,0.25). J Am Ceram Soc 66:247–252CrossRef Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1983) Electronic conductivity, Seebeck coefficient, and defect structure of La1−XSrXFeO3(x = 0.1,0.25). J Am Ceram Soc 66:247–252CrossRef
10.
go back to reference Wang SR, Katsuki M, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ion 159:71–78CrossRef Wang SR, Katsuki M, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ion 159:71–78CrossRef
11.
go back to reference Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion 76:259–271CrossRef Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion 76:259–271CrossRef
12.
go back to reference Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion 76:273–283CrossRef Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical-properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion 76:273–283CrossRef
13.
go back to reference Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 11:1743–1746CrossRef Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 11:1743–1746CrossRef
14.
go back to reference Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni): II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ion 110:53–60CrossRef Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni): II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ion 110:53–60CrossRef
15.
go back to reference Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729CrossRef Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729CrossRef
16.
go back to reference Li K, Tan X, Liu Y (2006) Single-step fabrication of ceramic hollow fibers for oxygen permeation. J Membr Sci 272:1–5CrossRef Li K, Tan X, Liu Y (2006) Single-step fabrication of ceramic hollow fibers for oxygen permeation. J Membr Sci 272:1–5CrossRef
17.
go back to reference Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T (2005) Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3−δ and its effect on structure and conductivity. Solid State Ion 176:1145–1149CrossRef Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T (2005) Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3−δ and its effect on structure and conductivity. Solid State Ion 176:1145–1149CrossRef
18.
go back to reference Lai B, Kerman K, Ramanathan S (2011) Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 symmetric thin film solid oxide fuel cells. J Power Sources 196:1826–1832CrossRef Lai B, Kerman K, Ramanathan S (2011) Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 symmetric thin film solid oxide fuel cells. J Power Sources 196:1826–1832CrossRef
19.
go back to reference Serra JM, Julio GF, Baumann S, Schulze-Küppers F, Meulenberg WA (2013) Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J Membr Sci 447:297–305CrossRef Serra JM, Julio GF, Baumann S, Schulze-Küppers F, Meulenberg WA (2013) Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J Membr Sci 447:297–305CrossRef
20.
go back to reference Araki W, Malzbender J (2013) Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3−δ under uniaxial compressive loading. J Eur Ceram Soc 33:805–812CrossRef Araki W, Malzbender J (2013) Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3−δ under uniaxial compressive loading. J Eur Ceram Soc 33:805–812CrossRef
21.
go back to reference Zou Y, Araki W, Balaguer M, Malzbender J (2016) Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3–δ. J Eur Ceram Soc 36:1651–1657CrossRef Zou Y, Araki W, Balaguer M, Malzbender J (2016) Elastic properties of freeze-cast La0.6Sr0.4Co0.2Fe0.8O3–δ. J Eur Ceram Soc 36:1651–1657CrossRef
22.
go back to reference Huang BX, Steinbrech RW, Baumann S, Malzbender J (2012) Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 60:2479–2484CrossRef Huang BX, Steinbrech RW, Baumann S, Malzbender J (2012) Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 60:2479–2484CrossRef
23.
go back to reference Zou Y, Schulze-Küppers F, Malzbende J (2015) Creep behavior of porous La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membrane supports. Ceram Int 41:4064–4069CrossRef Zou Y, Schulze-Küppers F, Malzbende J (2015) Creep behavior of porous La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membrane supports. Ceram Int 41:4064–4069CrossRef
24.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRef
26.
go back to reference Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley, WeinheimCrossRef Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley, WeinheimCrossRef
27.
go back to reference Huang S, Zhang Y, Leung B et al (2013) Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films. ACS Appl Mater Interfaces 5:11074–11079CrossRef Huang S, Zhang Y, Leung B et al (2013) Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films. ACS Appl Mater Interfaces 5:11074–11079CrossRef
28.
go back to reference Ojos DE, Pellicer E, Sort J (2016) The influence of pore size on the indentation behavior of metallic nanoporous materials: a molecular dynamics study. Materials 9:355CrossRef Ojos DE, Pellicer E, Sort J (2016) The influence of pore size on the indentation behavior of metallic nanoporous materials: a molecular dynamics study. Materials 9:355CrossRef
29.
go back to reference Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2007) Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores. J Eur Ceram Soc 27:53–59CrossRef Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2007) Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores. J Eur Ceram Soc 27:53–59CrossRef
31.
go back to reference Hu L, Benitez R, Basu S, Karaman I (2012) Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater 60:6266–6277CrossRef Hu L, Benitez R, Basu S, Karaman I (2012) Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater 60:6266–6277CrossRef
34.
go back to reference Selçuk A, Atkinson A (1997) Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J Eur Ceram Soc 17:1523–1532CrossRef Selçuk A, Atkinson A (1997) Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J Eur Ceram Soc 17:1523–1532CrossRef
35.
go back to reference Mielle S, Lombardi M, Chevalier J, Montanaro L (2012) Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J Eur Ceram Soc 32:3959–3976CrossRef Mielle S, Lombardi M, Chevalier J, Montanaro L (2012) Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J Eur Ceram Soc 32:3959–3976CrossRef
36.
go back to reference Chen W, Miyamoto Y (2014) Fabrication of porous silicon carbide ceramics with high porosity and high strength. J Eur Ceram Soc 34:837–840CrossRef Chen W, Miyamoto Y (2014) Fabrication of porous silicon carbide ceramics with high porosity and high strength. J Eur Ceram Soc 34:837–840CrossRef
37.
go back to reference Ryshkewitch E (1953) Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc 36:65–68CrossRef Ryshkewitch E (1953) Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc 36:65–68CrossRef
38.
go back to reference Pećanac G, Foghmoes S, Lipińska-Chwalek M, Baumann S, Beck T, Malzbender J (2013) Strength degradation and failure limits of dense and porous ceramic membrane materials. J Eur Ceram Soc 33:2689–2698CrossRef Pećanac G, Foghmoes S, Lipińska-Chwalek M, Baumann S, Beck T, Malzbender J (2013) Strength degradation and failure limits of dense and porous ceramic membrane materials. J Eur Ceram Soc 33:2689–2698CrossRef
39.
go back to reference Chou YS, Stevenson JW, Armstrong TR, Pederson LR (2000) Mechanical properties of La1-xSrxCo0.2Fe0.8O3 Mixed-Conducting perovskites made by the combustion synthesis technique. J Am Ceram Soc 83:1457–1464CrossRef Chou YS, Stevenson JW, Armstrong TR, Pederson LR (2000) Mechanical properties of La1-xSrxCo0.2Fe0.8O3 Mixed-Conducting perovskites made by the combustion synthesis technique. J Am Ceram Soc 83:1457–1464CrossRef
40.
go back to reference Islam MN, Araki W, Arai Y (2017) Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3−δ prepared with different pore formers. Ceram Int 43:14989–14995CrossRef Islam MN, Araki W, Arai Y (2017) Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3−δ prepared with different pore formers. Ceram Int 43:14989–14995CrossRef
41.
go back to reference Araki W, Shionoya K, Arai Y (2016) Ferroelastic mechanical behaviour of porous La0.6Sr0.4Co0.2Fe0.8O3−δ. Ceram Int 42:14614–14617CrossRef Araki W, Shionoya K, Arai Y (2016) Ferroelastic mechanical behaviour of porous La0.6Sr0.4Co0.2Fe0.8O3−δ. Ceram Int 42:14614–14617CrossRef
42.
go back to reference Park YM, Kim JH, Kim H (2011) High-performance composite cathodes for solid oxide fuel cells. Int J Hydrogen Energy 36:9169–9179CrossRef Park YM, Kim JH, Kim H (2011) High-performance composite cathodes for solid oxide fuel cells. Int J Hydrogen Energy 36:9169–9179CrossRef
43.
go back to reference Doorn RHEV, Bouwmeester HJM, Burggraaf AJ (1998) Kinetic decomposition of La0.3Sr0.7CoO3−δ perovskite membranes during oxygen permeation. Solid State Ion 111:263–272CrossRef Doorn RHEV, Bouwmeester HJM, Burggraaf AJ (1998) Kinetic decomposition of La0.3Sr0.7CoO3−δ perovskite membranes during oxygen permeation. Solid State Ion 111:263–272CrossRef
44.
go back to reference Paul ND, Robin ER (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33CrossRef Paul ND, Robin ER (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33CrossRef
45.
go back to reference Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion 135:719–725CrossRef Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion 135:719–725CrossRef
46.
go back to reference Liu R, Wang CA (2013) Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J Eur Ceram Soc 33:1859–1865CrossRef Liu R, Wang CA (2013) Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J Eur Ceram Soc 33:1859–1865CrossRef
47.
go back to reference Vullum PE, Holmestad R, Lein HL, Mastin J, Einarsrud MA, Grande T (2007) Monoclinic ferroelastic domains in LaCoO3-based perovskites. Adv Mater 19:4399–4403CrossRef Vullum PE, Holmestad R, Lein HL, Mastin J, Einarsrud MA, Grande T (2007) Monoclinic ferroelastic domains in LaCoO3-based perovskites. Adv Mater 19:4399–4403CrossRef
48.
go back to reference Araki W, Takeda K, Arai Y (2016) Mechanical behaviour of ferroelastic lanthanum metal oxides LaMO3 (M = Co, Al, Ga, Fe). J Eur Ceram Soc 36:4089–4094CrossRef Araki W, Takeda K, Arai Y (2016) Mechanical behaviour of ferroelastic lanthanum metal oxides LaMO3 (M = Co, Al, Ga, Fe). J Eur Ceram Soc 36:4089–4094CrossRef
49.
go back to reference Chen Z, Wang X, Bhakhri V, Giuliani F, Atkinson A (2013) Nanoindentation of porous bulk and thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 61:5720–5734CrossRef Chen Z, Wang X, Bhakhri V, Giuliani F, Atkinson A (2013) Nanoindentation of porous bulk and thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater 61:5720–5734CrossRef
50.
go back to reference Zhang J, Malzbender J (2015) Mechanical characterization of micro- and nano-porous alumina. Ceram Int 41:10725–10729CrossRef Zhang J, Malzbender J (2015) Mechanical characterization of micro- and nano-porous alumina. Ceram Int 41:10725–10729CrossRef
51.
go back to reference Huang BX, Steinbrech RW, Malzbender J (2012) Direct observation of ferroelastic domain effects in LSCF perovskites. Solid State Ionics 228:32–36CrossRef Huang BX, Steinbrech RW, Malzbender J (2012) Direct observation of ferroelastic domain effects in LSCF perovskites. Solid State Ionics 228:32–36CrossRef
52.
go back to reference Liu DM (1997) Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceram Int 23:135–139CrossRef Liu DM (1997) Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceram Int 23:135–139CrossRef
53.
go back to reference Huang BX, Malzbender J, Steinbrech RW, Singheiser L (2009) Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes. Solid State Ion 180:241–245CrossRef Huang BX, Malzbender J, Steinbrech RW, Singheiser L (2009) Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes. Solid State Ion 180:241–245CrossRef
54.
go back to reference Knudsen FP (1959) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42:376–387CrossRef Knudsen FP (1959) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42:376–387CrossRef
55.
go back to reference Wen CE, Yamada Y, Shomojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360CrossRef Wen CE, Yamada Y, Shomojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360CrossRef
56.
go back to reference Li X, Wu P, Zhu D (2013) Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering. Int J Refract Met Hard Mater 41:437–441CrossRef Li X, Wu P, Zhu D (2013) Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering. Int J Refract Met Hard Mater 41:437–441CrossRef
Metadata
Title
Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3−δ with various porosities and pore sizes
Authors
Md. Nurul Islam
Wakako Araki
Yoshio Arai
Publication date
07-01-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03268-9

Other articles of this Issue 7/2019

Journal of Materials Science 7/2019 Go to the issue

Premium Partners