Skip to main content
Top
Published in: Acta Mechanica 12/2019

10-08-2019 | Original Paper

Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery

Authors: Hanzhong Xing, Yulan Liu, B. Wang

Published in: Acta Mechanica | Issue 12/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid development of lithium-ion batteries, the electrode becomes more and more miniaturized. It is necessary to analyze the stress and axial force in the nanowire electrode. The main work of this paper is to analyze the stresses and buckling in homogeneous material nanowire electrodes and two kinds of composition-gradient (positive gradient and negative gradient) material nanowire electrodes of lithium-ion batteries. Comparing the diffusion-induced stresses (DISs) and buckling in three electrodes, we analyze the advantage of composition-gradient material electrodes on DISs and axial forces. The finite deformation theory and the stress-induced diffusion hypothesis are adopted to establish the constitutive equations, and the nonlinear influence of large deformation is considered. We conclude that ratios of length to radius and constraint conditions have great influence on the buckling of nanowire electrodes. The composition-gradient materials can reduce the stress and prevent the electrode from buckling. Under the same constraint condition, the positive gradient with smaller ratio of length to radius and smaller diffusion flux can delay buckling. When the ratio of length to radius are larger and the diffusion flux is larger, the negative gradient can delay buckling. The results can provide a theoretical guidance on the way of charging operation and the design of electrodes.
Literature
1.
go back to reference Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRef Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRef
2.
go back to reference Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)CrossRef Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)CrossRef
3.
go back to reference Kasavajjula, U., Wang, C., Appleby, A.J.: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sour. 163, 1003–1039 (2007)CrossRef Kasavajjula, U., Wang, C., Appleby, A.J.: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sour. 163, 1003–1039 (2007)CrossRef
4.
go back to reference Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sour. 196, 13–24 (2011)CrossRef Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sour. 196, 13–24 (2011)CrossRef
5.
go back to reference Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–140 (2001)CrossRef Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–140 (2001)CrossRef
6.
go back to reference Xiao, X., Liu, P., Verbrugge, M.W., Haftbaradaran, H., Gao, H.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196, 1409–1416 (2011)CrossRef Xiao, X., Liu, P., Verbrugge, M.W., Haftbaradaran, H., Gao, H.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196, 1409–1416 (2011)CrossRef
7.
go back to reference Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A. 109, 4080–4085 (2012)CrossRef Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A. 109, 4080–4085 (2012)CrossRef
9.
go back to reference Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)CrossRef Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)CrossRef
10.
go back to reference Zhang, J.Q., Lu, B., Song, Y.C., Ji, X.: Diffusion induced stress in layered Li-ion battery electrode plates. J. Power Sour. 209, 220–227 (2012)CrossRef Zhang, J.Q., Lu, B., Song, Y.C., Ji, X.: Diffusion induced stress in layered Li-ion battery electrode plates. J. Power Sour. 209, 220–227 (2012)CrossRef
11.
go back to reference Christopher, M.D., Kurt, M., Martin, L.D.: Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J. Power Sour. 196, 9672–9681 (2010) Christopher, M.D., Kurt, M., Martin, L.D.: Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J. Power Sour. 196, 9672–9681 (2010)
12.
go back to reference Song, Y., Lu, B., Ji, X., Zhang, J.: Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J. Electrochem. Soc. 159, A2060–2068 (2012)CrossRef Song, Y., Lu, B., Ji, X., Zhang, J.: Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J. Electrochem. Soc. 159, A2060–2068 (2012)CrossRef
13.
go back to reference He, Y.L., Hu, H.J., Song, Y.C., Guo, Z.S., Liu, C., Zhang, J.Q.: Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J. Power Sour. 248, 517–523 (2014)CrossRef He, Y.L., Hu, H.J., Song, Y.C., Guo, Z.S., Liu, C., Zhang, J.Q.: Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J. Power Sour. 248, 517–523 (2014)CrossRef
15.
go back to reference John, C., John, N.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRef John, C., John, N.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRef
16.
go back to reference Pallab, B., Partha, P.M.: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes. J. Electrochem. Soc. 160, A955–967 (2013)CrossRef Pallab, B., Partha, P.M.: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes. J. Electrochem. Soc. 160, A955–967 (2013)CrossRef
17.
go back to reference Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., Suo, Z.: Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge. J. Am. Ceram. Soc. 94, s226–235 (2011)CrossRef Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., Suo, Z.: Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge. J. Am. Ceram. Soc. 94, s226–235 (2011)CrossRef
18.
go back to reference Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2013)MathSciNetCrossRef Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2013)MathSciNetCrossRef
19.
go back to reference Liu, D.Y., Chen, W.Q., Shen, X.D.: Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery. Compos. Struct. 165, 91–98 (2017)CrossRef Liu, D.Y., Chen, W.Q., Shen, X.D.: Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery. Compos. Struct. 165, 91–98 (2017)CrossRef
20.
go back to reference Duan, X.T., Jiang, W.J., Zou, Y.L., Lei, W.X., Ma, Z.S.: A coupled electrochemical-thermal-mechanical model for spiral-wound Li-ion batteries. J. Mater. Sci. 53, 10987–11001 (2018)CrossRef Duan, X.T., Jiang, W.J., Zou, Y.L., Lei, W.X., Ma, Z.S.: A coupled electrochemical-thermal-mechanical model for spiral-wound Li-ion batteries. J. Mater. Sci. 53, 10987–11001 (2018)CrossRef
21.
go back to reference Weng, L., Zhou, J.Q., Cai, R.: Analytical model of Li-ion diffusion-induced stress in nanowire and negative Poisson’s ratio electrode under different operations. Int. J. Mech. Sci. 141, 245–261 (2018)CrossRef Weng, L., Zhou, J.Q., Cai, R.: Analytical model of Li-ion diffusion-induced stress in nanowire and negative Poisson’s ratio electrode under different operations. Int. J. Mech. Sci. 141, 245–261 (2018)CrossRef
22.
go back to reference Zhang, K., Li, Y., Zheng, B.L., Wu, G.P., Wu, J.S., Yang, F.Q.: Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int. J. Solids Struct. 108, 230–243 (2017)CrossRef Zhang, K., Li, Y., Zheng, B.L., Wu, G.P., Wu, J.S., Yang, F.Q.: Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int. J. Solids Struct. 108, 230–243 (2017)CrossRef
23.
go back to reference Zhu, Z.Q., Hu, H.J., He, Y.L., Tao, B.: Buckling analysis and control of layered electrode structure at finite deformation. Compos. Struct. 204, 822–830 (2018)CrossRef Zhu, Z.Q., Hu, H.J., He, Y.L., Tao, B.: Buckling analysis and control of layered electrode structure at finite deformation. Compos. Struct. 204, 822–830 (2018)CrossRef
24.
go back to reference Hou, P.Y., Zhang, L.Q., Gao, X.P.: A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. J. Mater. Chem. A 2, 17130–17138 (2014)CrossRef Hou, P.Y., Zhang, L.Q., Gao, X.P.: A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. J. Mater. Chem. A 2, 17130–17138 (2014)CrossRef
25.
go back to reference Liu, W., Oh, P., Liu, X., Lee, M.J., Cho, W., Chee, S., Kim, Y., Cho, J.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015)CrossRef Liu, W., Oh, P., Liu, X., Lee, M.J., Cho, W., Chee, S., Kim, Y., Cho, J.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015)CrossRef
26.
go back to reference Wei, Q., Wang, X., Yang, X., Ju, B., Hu, B., Shu, H., Wen, W., Zhou, M., Song, Y., Wu, H., Hu, H.: Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A 1, 4010–4016 (2013)CrossRef Wei, Q., Wang, X., Yang, X., Ju, B., Hu, B., Shu, H., Wen, W., Zhou, M., Song, Y., Wu, H., Hu, H.: Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A 1, 4010–4016 (2013)CrossRef
27.
go back to reference Jr, G.M.K., Belharouak, I., Deng, H., Sun, Y.K., Amine, K.: Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem. Mater. 23, 2863–2870 (2011) Jr, G.M.K., Belharouak, I., Deng, H., Sun, Y.K., Amine, K.: Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem. Mater. 23, 2863–2870 (2011)
28.
go back to reference Li, Y., Zhang, K., Zheng, B.: Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–228 (2015)CrossRef Li, Y., Zhang, K., Zheng, B.: Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–228 (2015)CrossRef
29.
go back to reference Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)MathSciNetCrossRef Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)MathSciNetCrossRef
31.
go back to reference Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)CrossRef Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)CrossRef
33.
go back to reference Li, Y., Zhang, K., Zheng, B.: Interaction between diffusion and stresses in composition-gradient electrodes. Solid State Ion. 283, 103–108 (2015)CrossRef Li, Y., Zhang, K., Zheng, B.: Interaction between diffusion and stresses in composition-gradient electrodes. Solid State Ion. 283, 103–108 (2015)CrossRef
34.
go back to reference Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)CrossRef Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)CrossRef
35.
go back to reference Tanmay, K.B., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 40, 1424–1434 (2010)MATH Tanmay, K.B., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 40, 1424–1434 (2010)MATH
36.
go back to reference Woodford, W.H., Chiang, Y.M., Carter, W.C.: “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–1059 (2010)CrossRef Woodford, W.H., Chiang, Y.M., Carter, W.C.: “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–1059 (2010)CrossRef
Metadata
Title
Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery
Authors
Hanzhong Xing
Yulan Liu
B. Wang
Publication date
10-08-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02486-9

Other articles of this Issue 12/2019

Acta Mechanica 12/2019 Go to the issue

Premium Partners