Skip to main content
Top

2022 | OriginalPaper | Chapter

12. Membrane-Remodeling Proteins

Author : Toshio Ando

Published in: High-Speed Atomic Force Microscopy in Biology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many cellular processes depend on membrane shape changes. Cytokinesis, exocytosis and endocytosis, phagocytosis, T-tubule formation in muscle, crista formation in mitochondria, fission and fusion of organelles, and fission and fusion of vesicular compartments as transport carriers all proceed via membrane rearrangements. Their initial process proceeds from membrane bulging and budding either toward or away from the cytoplasm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bashkirov, P. V., AkimovS, A., Evseev, A. I., Schmid, S. L., Zimmerberg, J., & Frolov, V. A. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell, 135, 1276–1286.CrossRef Bashkirov, P. V., AkimovS, A., Evseev, A. I., Schmid, S. L., Zimmerberg, J., & Frolov, V. A. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell, 135, 1276–1286.CrossRef
go back to reference Bassereau, P., Jin, R., Baumgart, T., Deserno, M., Dimova, R., Frolov, V. A., Bashkirov, P. V., Grubmüller, H., Jahn, R., Risselada, H. J., Johannes, L., Kozlov, M. M., Lipowsky, R., Pucadyil, T. J., Zeno, W. F., Stachowiak, J. C., Stamou, D., Breuer, A., Lauritsen, L., Simon, C., Sykes, C., Voth, G. A., & Weikl, T. R. (2018). Topical review: The 2018 biomembrane curvature and remodeling roadmap. Journal of Physics D: Applied Physics, 51, 343001. Bassereau, P., Jin, R., Baumgart, T., Deserno, M., Dimova, R., Frolov, V. A., Bashkirov, P. V., Grubmüller, H., Jahn, R., Risselada, H. J., Johannes, L., Kozlov, M. M., Lipowsky, R., Pucadyil, T. J., Zeno, W. F., Stachowiak, J. C., Stamou, D., Breuer, A., Lauritsen, L., Simon, C., Sykes, C., Voth, G. A., & Weikl, T. R. (2018). Topical review: The 2018 biomembrane curvature and remodeling roadmap. Journal of Physics D: Applied Physics, 51, 343001.
go back to reference Carlton, J. G., & Martin-Serrano, J. (2009). The ESCRT machinery: New functions in viral and cellular biology. Biochemical Society Transactions, 37, 195–199.CrossRef Carlton, J. G., & Martin-Serrano, J. (2009). The ESCRT machinery: New functions in viral and cellular biology. Biochemical Society Transactions, 37, 195–199.CrossRef
go back to reference Cashikar, A. G., Shim, S., Roth, R., Maldazys, M. R., Heuser, J. E., Hanson, P. I. (2014). Structure of cellular E SCRT-III spirals and their relationship to HIV budding. eLife, 3, e02184. Cashikar, A. G., Shim, S., Roth, R., Maldazys, M. R., Heuser, J. E., Hanson, P. I. (2014). Structure of cellular E SCRT-III spirals and their relationship to HIV budding. eLife, 3, e02184.
go back to reference Chappie, J. S., Mears, J. A., Fang, S., Leonard, M., Schmid, S. L., Milligan, R. A., Hinshaw, J. E., & Dyda, F. (2011). A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell, 147, 209–222.CrossRef Chappie, J. S., Mears, J. A., Fang, S., Leonard, M., Schmid, S. L., Milligan, R. A., Hinshaw, J. E., & Dyda, F. (2011). A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell, 147, 209–222.CrossRef
go back to reference Chen, Y., Zhang, P., Egelman, E., & Hinshaw, J. E. (2004). The stalk region of dynamin drives the constriction of dynamin tubes. Nature Structural & Molecular Biology, 11, 574–575.CrossRef Chen, Y., Zhang, P., Egelman, E., & Hinshaw, J. E. (2004). The stalk region of dynamin drives the constriction of dynamin tubes. Nature Structural & Molecular Biology, 11, 574–575.CrossRef
go back to reference Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz, M., Scheuring, S., & Roux, A. (2015). Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell, 163, 866–879.CrossRef Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz, M., Scheuring, S., & Roux, A. (2015). Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell, 163, 866–879.CrossRef
go back to reference Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A., & Scheuring, S. (2017). Dynamic remodeling of the dynamin helix during membrane constriction. Proceedings of the National Academy of Sciences of the United States of America, 114, 5449–5454.CrossRef Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A., & Scheuring, S. (2017). Dynamic remodeling of the dynamin helix during membrane constriction. Proceedings of the National Academy of Sciences of the United States of America, 114, 5449–5454.CrossRef
go back to reference Daumke, O., & Unger, V. M. (2016). Special Issue Introductions: Protein-mediated membrane remodeling. Journal of Structural Biology, 196, 1–2.CrossRef Daumke, O., & Unger, V. M. (2016). Special Issue Introductions: Protein-mediated membrane remodeling. Journal of Structural Biology, 196, 1–2.CrossRef
go back to reference Faelber, K., Posor, Y., Gao, S., Held, M., Roske, Y., Schulze, D., Haucke, V., Noé, F., & Daumke, O. (2011). Crystal structure of nucleotide-free dynamin. Nature, 477, 561–566.CrossRefADS Faelber, K., Posor, Y., Gao, S., Held, M., Roske, Y., Schulze, D., Haucke, V., Noé, F., & Daumke, O. (2011). Crystal structure of nucleotide-free dynamin. Nature, 477, 561–566.CrossRefADS
go back to reference Ferguson, S. M., & De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology, 13, 75–88.CrossRef Ferguson, S. M., & De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology, 13, 75–88.CrossRef
go back to reference Ford, M. G. J., Jenni, S., & Nunnari, J. (2011). The crystal structure of dynamin. Nature, 477, 556–560.CrossRefADS Ford, M. G. J., Jenni, S., & Nunnari, J. (2011). The crystal structure of dynamin. Nature, 477, 556–560.CrossRefADS
go back to reference Hanson, P. I., Roth, R., Lin, Y., & Heuser, J. E. (2008). Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. Journal of Cell Biology, 180, 389–402.CrossRef Hanson, P. I., Roth, R., Lin, Y., & Heuser, J. E. (2008). Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. Journal of Cell Biology, 180, 389–402.CrossRef
go back to reference Hanson, P. I., Shim, S., & Merrill, S. A. (2009). Cell biology of the ESCRT machinery. Current Opinion in Cell Biology, 21, 568–574.CrossRef Hanson, P. I., Shim, S., & Merrill, S. A. (2009). Cell biology of the ESCRT machinery. Current Opinion in Cell Biology, 21, 568–574.CrossRef
go back to reference Kozlov, M. M., McMahon, H. T., & Chernomordik, L. V. (2010). Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 35, 699–706.CrossRef Kozlov, M. M., McMahon, H. T., & Chernomordik, L. V. (2010). Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 35, 699–706.CrossRef
go back to reference Landsberg, M. J., Vajjhala, P. R., Rothnage, R., Munn, A. L., & Hankamer, B. (2009). Three-dimensional structure of AAA ATPase Vps4: Advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure, 17, 427–437.CrossRef Landsberg, M. J., Vajjhala, P. R., Rothnage, R., Munn, A. L., & Hankamer, B. (2009). Three-dimensional structure of AAA ATPase Vps4: Advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure, 17, 427–437.CrossRef
go back to reference Lata, S., Schoehn, G., Jain, A., Pires, R., Piehler, J., Gőttlinger, H. G., & Weissenhorn, W. (2008). Helical structures of ESCRT-III are disassembled by VPS4. Science, 321, 1354–1357.CrossRefADS Lata, S., Schoehn, G., Jain, A., Pires, R., Piehler, J., Gőttlinger, H. G., & Weissenhorn, W. (2008). Helical structures of ESCRT-III are disassembled by VPS4. Science, 321, 1354–1357.CrossRefADS
go back to reference Maity, S., Caillat, C., Miguet, N., Sulbaran, G., Effantin, G., Schoehn, G., Roos, W.H., & Weissenhorn, W. (2019). VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 5, eaau7198. Maity, S., Caillat, C., Miguet, N., Sulbaran, G., Effantin, G., Schoehn, G., Roos, W.H., & Weissenhorn, W. (2019). VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 5, eaau7198.
go back to reference McCullough, J., Clippinger, A. K., Talledge, N., Skowyra, M. L., Saunders, M. G., Naismith, T. V., Colf, L. A., Afonine, P., Arthur, C., Sundquist, W. I., Hanson, P. I., & Frost, A. (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers. Science, 350, 1548–1551.CrossRefADS McCullough, J., Clippinger, A. K., Talledge, N., Skowyra, M. L., Saunders, M. G., Naismith, T. V., Colf, L. A., Afonine, P., Arthur, C., Sundquist, W. I., Hanson, P. I., & Frost, A. (2015). Structure and membrane remodeling activity of ESCRT-III helical polymers. Science, 350, 1548–1551.CrossRefADS
go back to reference McCullough, J., Frost, A., & Sundquist, W. I. (2018). Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes. Annual Review of Cell and Developmental Biology, 34, 85–109.CrossRef McCullough, J., Frost, A., & Sundquist, W. I. (2018). Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes. Annual Review of Cell and Developmental Biology, 34, 85–109.CrossRef
go back to reference Mierzwa, B. E., Chiaruttini, N., Redondo-Morata, L., Moser Von Filseck, J., König, J., Larios, J., Poser, I., Müller-Reichert, T., Scheuring, S., Roux, A., & Gerlich, D. W. (2017). Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 19, 787–798.CrossRef Mierzwa, B. E., Chiaruttini, N., Redondo-Morata, L., Moser Von Filseck, J., König, J., Larios, J., Poser, I., Müller-Reichert, T., Scheuring, S., Roux, A., & Gerlich, D. W. (2017). Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 19, 787–798.CrossRef
go back to reference Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D. J., Perisic, O., Emr, S. D., & Williams, R. L. (2007). Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature, 449, 735–739.CrossRefADS Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D. J., Perisic, O., Emr, S. D., & Williams, R. L. (2007). Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature, 449, 735–739.CrossRefADS
go back to reference Pucadyil, T. J., & Schmid, S. L. (2008). Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell, 135, 1263–1275.CrossRef Pucadyil, T. J., & Schmid, S. L. (2008). Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell, 135, 1263–1275.CrossRef
go back to reference Reubold, T. F., Faelber, K. L., Plattner, N., Posor, Y., Ketel, K., Curth, U., & Schlegel, J. (2015). Crystal structure of the dynamin tetramer. Nature, 525, 404–408.CrossRefADS Reubold, T. F., Faelber, K. L., Plattner, N., Posor, Y., Ketel, K., Curth, U., & Schlegel, J. (2015). Crystal structure of the dynamin tetramer. Nature, 525, 404–408.CrossRefADS
go back to reference Roux, A., Uyhazi, K., Frost, A., & De Camilli, P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature, 441, 528–530.CrossRefADS Roux, A., Uyhazi, K., Frost, A., & De Camilli, P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature, 441, 528–530.CrossRefADS
go back to reference Schöneberg, J., et al. (2018). ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science, 362, 1423–1428.CrossRefADS Schöneberg, J., et al. (2018). ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science, 362, 1423–1428.CrossRefADS
go back to reference Stowell, M. H., Marks, B., Wigge, P., & McMahon, H. T. (1999). Nucleotide-dependent conformational changes in dynamin: Evidence for a mechanochemical molecular spring. Nature Cell Biology, 1, 27–32.CrossRef Stowell, M. H., Marks, B., Wigge, P., & McMahon, H. T. (1999). Nucleotide-dependent conformational changes in dynamin: Evidence for a mechanochemical molecular spring. Nature Cell Biology, 1, 27–32.CrossRef
go back to reference Stuchell-Brereton, M. D., Skalicky, J. J., Kieffer, C., Karren, M. A., Ghaffarian, S., & Sundquist, W. I. (2007). ESCRT-III recognition by VPS4 ATPases. Nature, 449, 740–744.CrossRefADS Stuchell-Brereton, M. D., Skalicky, J. J., Kieffer, C., Karren, M. A., Ghaffarian, S., & Sundquist, W. I. (2007). ESCRT-III recognition by VPS4 ATPases. Nature, 449, 740–744.CrossRefADS
go back to reference Stuffers, S., Brech, A., & Stenmark, H. (2009). ESCRT proteins in physiology and disease. Experimental Cell Research, 315, 1619–1626.CrossRef Stuffers, S., Brech, A., & Stenmark, H. (2009). ESCRT proteins in physiology and disease. Experimental Cell Research, 315, 1619–1626.CrossRef
go back to reference Sundborger, A. C., Fang, S., Heymann, J. A., Ray, P., Chappie, J. S., & Hinshaw, J. E. (2014). A dynamin mutant defines a superconstricted prefission state. Cell Reports, 8, 734–742.CrossRef Sundborger, A. C., Fang, S., Heymann, J. A., Ray, P., Chappie, J. S., & Hinshaw, J. E. (2014). A dynamin mutant defines a superconstricted prefission state. Cell Reports, 8, 734–742.CrossRef
go back to reference Sweitzer, S. M., & Hinshaw, J. E. (1998). Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell, 93, 1021–1029.CrossRef Sweitzer, S. M., & Hinshaw, J. E. (1998). Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell, 93, 1021–1029.CrossRef
go back to reference Takeda, T., Kozai, T., Yang, H., Ishikuro, D., Seyama, K., Kumagai, Y., Abe, T., Yamada, H., Uchihashi, T., Ando, T., & Takei, K. (2018). Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife, 7, e30246. Takeda, T., Kozai, T., Yang, H., Ishikuro, D., Seyama, K., Kumagai, Y., Abe, T., Yamada, H., Uchihashi, T., Ando, T., & Takei, K. (2018). Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife, 7, e30246.
go back to reference Takei, K., McPherson, P. S., Schmid, S. L., & De Camilli, P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature, 374, 186–190.CrossRefADS Takei, K., McPherson, P. S., Schmid, S. L., & De Camilli, P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature, 374, 186–190.CrossRefADS
go back to reference Takei, K., Haucke, V., Slepnev, V., Farsad, K., Salazar, M., Chen, H., & De Camilli, P. (1998). Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell, 94, 131–141.CrossRef Takei, K., Haucke, V., Slepnev, V., Farsad, K., Salazar, M., Chen, H., & De Camilli, P. (1998). Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell, 94, 131–141.CrossRef
go back to reference Vietri, M., Radulovic, M., & Stenmark, H. (2020). The many functions of ESCRTs. Nature Reviews Molecular Cell Biology, 21, 25–42.CrossRef Vietri, M., Radulovic, M., & Stenmark, H. (2020). The many functions of ESCRTs. Nature Reviews Molecular Cell Biology, 21, 25–42.CrossRef
go back to reference Wollert, T., Wunder, C., Lippincott-Schwartz, J., & Hurley, J. H. (2009). Membrane scission by the ESCRT-III complex. Nature, 458, 172–177.CrossRefADS Wollert, T., Wunder, C., Lippincott-Schwartz, J., & Hurley, J. H. (2009). Membrane scission by the ESCRT-III complex. Nature, 458, 172–177.CrossRefADS
go back to reference Wollert, T., & Hurley, J. H. (2010). Molecular mechanism of multivesicular body biogenesis by the ESCRT complexes. Nature, 464, 864–869.CrossRefADS Wollert, T., & Hurley, J. H. (2010). Molecular mechanism of multivesicular body biogenesis by the ESCRT complexes. Nature, 464, 864–869.CrossRefADS
go back to reference Zhang, P., & Hinshaw, J. E. (2001). Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biology, 3, 922–925.CrossRef Zhang, P., & Hinshaw, J. E. (2001). Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biology, 3, 922–925.CrossRef
Metadata
Title
Membrane-Remodeling Proteins
Author
Toshio Ando
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64785-1_12