Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors

Authors : Kai Tao, Honglong Chang, Jin Wu, Lihua Tang, Jianmin Miao

Published in: Self-Powered and Soft Polymer MEMS/NEMS Devices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 1 reviews the recent progress in kinetic MEMS/NEMS-enabled energy harvesters as self-powered sensors. Recent advances and challenges in MEMS/NEMS-enabled self-sustained sensor working mechanisms including electromagnetic, piezoelectric, electrostatic, triboelectric, and magnetostrictive are reviewed and discussed. Recent advances in Internet of Things (IoT) and sensor networks reveal new insight into the understanding of traditional power sources with the new characteristics of mobility, sustainability, and availability. Individually, the power consumption of each sensor unit is low; however, the number of units deployed is huge. As predicted by Cisco, trillions of sensors will be distributed on the earth by 2020. Conventional technologies which employ batteries to supply power may not be the choice. Energy harvesting systems as self-sustained power sources are capable of capturing and transforming unused ambient energy into the electrical energy. Intensive efforts during the last two decades toward the development of micro-/nanoelectromechanical systems (MEMS/NEMS)-enabled energy harvesting technologies have yield breakthroughs in self-powered sensor evolutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.CrossRef Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.CrossRef
2.
go back to reference Steingart, D. (2009). Power sources for wireless sensor networks. In S. Priya & D. Inman (Eds.), Energy harvesting technologies (pp. 267–286). New York: Springer.CrossRef Steingart, D. (2009). Power sources for wireless sensor networks. In S. Priya & D. Inman (Eds.), Energy harvesting technologies (pp. 267–286). New York: Springer.CrossRef
3.
go back to reference Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.CrossRef Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.CrossRef
4.
go back to reference Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.CrossRef Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.CrossRef
5.
go back to reference Xie, J., Chengkuo, L., & Hanhua, F. (2010). Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. Journal of Microelectromechanical Systems, 19(2), 317–324.CrossRef Xie, J., Chengkuo, L., & Hanhua, F. (2010). Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. Journal of Microelectromechanical Systems, 19(2), 317–324.CrossRef
6.
go back to reference Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.CrossRef Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.CrossRef
7.
go back to reference Hudak, N. S., & Amatucci, G. G. (2008). Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Journal of Applied Physics, 103, 101301.CrossRef Hudak, N. S., & Amatucci, G. G. (2008). Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Journal of Applied Physics, 103, 101301.CrossRef
8.
go back to reference Zhou, S. X., & Zuo, L. (2018). Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271–284.MathSciNetCrossRef Zhou, S. X., & Zuo, L. (2018). Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271–284.MathSciNetCrossRef
9.
go back to reference Chen, G. J., Li, Y. F., Xiao, H. M., & Zhu, X. (2017). A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power. Journal of Materials Chemistry A, 5, 4150–4155.CrossRef Chen, G. J., Li, Y. F., Xiao, H. M., & Zhu, X. (2017). A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power. Journal of Materials Chemistry A, 5, 4150–4155.CrossRef
10.
go back to reference Halim, M. A., et al. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74.CrossRef Halim, M. A., et al. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74.CrossRef
11.
go back to reference Zhang, X., et al. (2018). Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges. Journal of Micromechanics and Microengineering, 28, 065012.CrossRef Zhang, X., et al. (2018). Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges. Journal of Micromechanics and Microengineering, 28, 065012.CrossRef
12.
go back to reference Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.CrossRef Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.CrossRef
13.
go back to reference Roundy, S., Wright, P. K., & Pister, K. S. (2002). Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol), 220(22), 1–10. Roundy, S., Wright, P. K., & Pister, K. S. (2002). Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol), 220(22), 1–10.
14.
go back to reference Sakane, Y., Suzuki, Y., & Kasagi, N. (Oct 2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.CrossRef Sakane, Y., Suzuki, Y., & Kasagi, N. (Oct 2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.CrossRef
15.
go back to reference Boisseau, S., Duret, A.-B., Chaillout, J.-J., & Despesse, G. (2012). New DRIE-patterned electrets for vibration energy harvesting. In EPJ Web of Conferences (Vol. 33, p. 02010). EDP Sciences. Les Ulis, France.CrossRef Boisseau, S., Duret, A.-B., Chaillout, J.-J., & Despesse, G. (2012). New DRIE-patterned electrets for vibration energy harvesting. In EPJ Web of Conferences (Vol. 33, p. 02010). EDP Sciences. Les Ulis, France.CrossRef
16.
go back to reference Tao, K., Liu, S., Lye, S. W., Miao, J., & Hu, X. (2014). A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting. Journal of Micromechanics and Microengineering, 24(6), 065022.CrossRef Tao, K., Liu, S., Lye, S. W., Miao, J., & Hu, X. (2014). A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting. Journal of Micromechanics and Microengineering, 24(6), 065022.CrossRef
17.
go back to reference Tao, K., Miao, J., Lye, S. W., & Hu, X. (2015). Sandwich-structured two-dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting. Sensors and Actuators A: Physical, 228, 95–103.CrossRef Tao, K., Miao, J., Lye, S. W., & Hu, X. (2015). Sandwich-structured two-dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting. Sensors and Actuators A: Physical, 228, 95–103.CrossRef
18.
go back to reference Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.CrossRef Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.CrossRef
19.
go back to reference Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135(0), 32–37.CrossRef Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135(0), 32–37.CrossRef
20.
go back to reference Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.CrossRef Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.CrossRef
21.
go back to reference Tao, K., Tang, L. H., Wu, J., Lye, S. W., Chang, H. L., & Miao, J. M. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.CrossRef Tao, K., Tang, L. H., Wu, J., Lye, S. W., Chang, H. L., & Miao, J. M. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.CrossRef
22.
go back to reference Williams, C. B., & Yates, R. B. (Mar-Apr 1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators a-Physical, 52(1–3), 8–11.CrossRef Williams, C. B., & Yates, R. B. (Mar-Apr 1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators a-Physical, 52(1–3), 8–11.CrossRef
23.
go back to reference Tao, K., Ding, G., Wang, P., Yang, Z., & Wang, Y. (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1237–1240. Tao, K., Ding, G., Wang, P., Yang, Z., & Wang, Y. (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1237–1240.
24.
go back to reference Tao, K., Wu, J., Kottapalli, A. G. P., et al. (2017). Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator. Solid-State Electronics, 138, 66–72.CrossRef Tao, K., Wu, J., Kottapalli, A. G. P., et al. (2017). Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator. Solid-State Electronics, 138, 66–72.CrossRef
25.
go back to reference Tao, K., Wu, J., Tang, L., et al. (2016). A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. Journal of Micromechanics and Microengineering, 26(3), 035020.CrossRef Tao, K., Wu, J., Tang, L., et al. (2016). A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. Journal of Micromechanics and Microengineering, 26(3), 035020.CrossRef
27.
go back to reference Ueno, T. (2015). Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. Journal of Applied Physics, 117, 17A740.CrossRef Ueno, T. (2015). Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. Journal of Applied Physics, 117, 17A740.CrossRef
28.
go back to reference Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., & Lee, C. (2009). Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. Journal of Micromechanics and Microengineering, 19(6), 065014.CrossRef Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., & Lee, C. (2009). Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. Journal of Micromechanics and Microengineering, 19(6), 065014.CrossRef
29.
go back to reference Wang, P. H., et al. (2018). Complementary electromagnetic-triboelectric active Sensor for detecting multiple mechanical triggering. Advanced Functional Materials, 1705808, 1–9. Wang, P. H., et al. (2018). Complementary electromagnetic-triboelectric active Sensor for detecting multiple mechanical triggering. Advanced Functional Materials, 1705808, 1–9.
30.
go back to reference Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T., & Lee, C. (2012). Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Applied Physics Letters, 100(22), 223905–223903.CrossRef Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T., & Lee, C. (2012). Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Applied Physics Letters, 100(22), 223905–223903.CrossRef
31.
go back to reference Xuefeng, H., Zhengguo, S., Yaoqing, C., & You, Z. (2013). A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging. Journal of Micromechanics and Microengineering, 23(12), 125009.CrossRef Xuefeng, H., Zhengguo, S., Yaoqing, C., & You, Z. (2013). A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging. Journal of Micromechanics and Microengineering, 23(12), 125009.CrossRef
32.
go back to reference Qi, Y., Kim, J., Nguyen, T. D., Lisko, B., Purohit, P. K., & McAlpine, M. C. (2011). Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters, 11(3), 1331–1336.CrossRef Qi, Y., Kim, J., Nguyen, T. D., Lisko, B., Purohit, P. K., & McAlpine, M. C. (2011). Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters, 11(3), 1331–1336.CrossRef
33.
go back to reference Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242–246.CrossRef Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242–246.CrossRef
34.
go back to reference Xu, S., Lao, C., Weintraub, B., & Wang, Z. L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. Journal of Materials Research, 23(8), 2072–2077.CrossRef Xu, S., Lao, C., Weintraub, B., & Wang, Z. L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. Journal of Materials Research, 23(8), 2072–2077.CrossRef
35.
go back to reference Hu, Y., Xu, C., Zhang, Y., Lin, L., Snyder, R. L., & Wang, Z. L. (2011). A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Advanced Materials, 23(35), 4068–4071.CrossRef Hu, Y., Xu, C., Zhang, Y., Lin, L., Snyder, R. L., & Wang, Z. L. (2011). A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Advanced Materials, 23(35), 4068–4071.CrossRef
36.
go back to reference Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., & Wang, Z. L. (2011). Self-powered environmental sensor system driven by nanogenerators. Energy & Environmental Science, 4(9), 3359–3363.CrossRef Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., & Wang, Z. L. (2011). Self-powered environmental sensor system driven by nanogenerators. Energy & Environmental Science, 4(9), 3359–3363.CrossRef
37.
go back to reference Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726–731.CrossRef Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726–731.CrossRef
38.
go back to reference Zhou, Y. S., et al. (2014). Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 26(11), 1719–1724.CrossRef Zhou, Y. S., et al. (2014). Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 26(11), 1719–1724.CrossRef
39.
go back to reference Lin, L., et al. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923.CrossRef Lin, L., et al. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923.CrossRef
40.
go back to reference Lin, L., Wang, S., Niu, S., Liu, C., Xie, Y., & Wang, Z. L. (2014). Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Applied Materials & Interfaces, 6(4), 3031–3038.CrossRef Lin, L., Wang, S., Niu, S., Liu, C., Xie, Y., & Wang, Z. L. (2014). Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Applied Materials & Interfaces, 6(4), 3031–3038.CrossRef
41.
go back to reference Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.CrossRef Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.CrossRef
42.
go back to reference Lin, L., et al. (2013). Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 7(9), 8266–8274.CrossRef Lin, L., et al. (2013). Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 7(9), 8266–8274.CrossRef
43.
go back to reference Zhu, G., et al. (2014). Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 14(6), 3208–3213.CrossRef Zhu, G., et al. (2014). Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 14(6), 3208–3213.CrossRef
44.
go back to reference Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., & Wang, Z. L. (2014). Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 8(3), 2649–2657.CrossRef Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., & Wang, Z. L. (2014). Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 8(3), 2649–2657.CrossRef
45.
go back to reference Yu, A., et al. (2015). Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 8(3), 765–773.CrossRef Yu, A., et al. (2015). Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 8(3), 765–773.CrossRef
46.
go back to reference Lin, Z. H., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.CrossRef Lin, Z. H., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.CrossRef
47.
go back to reference Li, Z., et al. (2015). β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy & Environmental Science, 8(3), 887–896.CrossRef Li, Z., et al. (2015). β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy & Environmental Science, 8(3), 887–896.CrossRef
Metadata
Title
MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors
Authors
Kai Tao
Honglong Chang
Jin Wu
Lihua Tang
Jianmin Miao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05554-7_1