Skip to main content
Top

2014 | OriginalPaper | Chapter

MEMS Sensors for Underwater Applications

Authors : V. Natarajan, M. Kathiresan, K. A. Thomas, Rajeev R. Ashokan, G. Suresh, E. Varadarajan, Shiny Nair

Published in: Micro and Smart Devices and Systems

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microelectromechanical system (MEMS)-based sensors for marine environment help to realize new systems that bring enhanced levels of perception, control, and performance to sonar systems and sensors related to marine environments. Processing, assembly, packaging, testing, and manufacturing methods are all highly dictated by the intended application of MEMS devices; hence, these disciplines are being honed up to meet the demands with new materials and performance requirements across a wide spectrum of underwater applications. Five basic parameters are measured in the ocean to define its physical state: temperature, salinity, pressure, density, and velocity of sound. These can be obtained using a pressure sensor, temperature detector, and a conductivity sensor. Biologically inspired MEMS shear stress sensors comprising a piezoresistive floating element offer the potential to make flow measurements in fluid with unprecedented sensitivity, and spatial and temporal resolution. In order to get finer resolution of underwater objects in turbid waters, it is imperative to work at MHz frequencies. Different types of transducers such as CMUT, PMUT, and Helmholtz resonator are also realized by MEMS fabrication and are readily scalable in size. In addition, multiplexing, pulsing, and pre-amplifying electronics can be easily integrated on the same chip with the transducers or on a separate chip via flip-chip bonding. This allows for 1D and 2D arrays of elements to be easily steered electronically. Thus, fabrication of a large number of transducers with built-in pre-amplifiers required in a planar array configuration is possible with MEMS-based technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hayward G, Bennett J, Hamilton R (1995) A theoretical study on the influence of some constituent material properties on the behaviour of 1–3 connectivity composite transducer. J Acoust Soc Am 98(4):2187–2196CrossRef Hayward G, Bennett J, Hamilton R (1995) A theoretical study on the influence of some constituent material properties on the behaviour of 1–3 connectivity composite transducer. J Acoust Soc Am 98(4):2187–2196CrossRef
2.
go back to reference Swartz RG, Plummer JD (1979) Integrated silicon-PVF2 acoustic transducer array. IEEE Trans Electron Devices ED-26(12):1921–1931 Swartz RG, Plummer JD (1979) Integrated silicon-PVF2 acoustic transducer array. IEEE Trans Electron Devices ED-26(12):1921–1931
3.
go back to reference Fiorillo AS, Spiegel JV, Bloomfield PE, Esmail-Xandi D (1990) A P(VDF-TrFE)—based integrated ultrasonic transducer. Sens Actuators, A21–A23:719–725 Fiorillo AS, Spiegel JV, Bloomfield PE, Esmail-Xandi D (1990) A P(VDF-TrFE)—based integrated ultrasonic transducer. Sens Actuators, A21–A23:719–725
4.
go back to reference Uma G, Umapathy M, Sumy J, Natarajan V, Kathiresan M (2007) Design and simulation of PVDF-MOSFET based MEMS hydrophone. J Instrum Sci Technol 35(3)329–339 Uma G, Umapathy M, Sumy J, Natarajan V, Kathiresan M (2007) Design and simulation of PVDF-MOSFET based MEMS hydrophone. J Instrum Sci Technol 35(3)329–339
5.
go back to reference Zheng XR, Lai PT, Liu BY, Li B, Cheng YC (1997) An integrated PVDF ultrasonic sensor with improved sensitivity using polyimide. Sens Actuators A 63:147–152CrossRef Zheng XR, Lai PT, Liu BY, Li B, Cheng YC (1997) An integrated PVDF ultrasonic sensor with improved sensitivity using polyimide. Sens Actuators A 63:147–152CrossRef
6.
go back to reference Zhu B, Varadan VK (2002) Integrated MOSFET-based hydrophone device for underwater applications. In: Proceedings of SPIE on smart structures and materials 2002: smart electronics, MEMS, and nanotechnology, vol 4700, pp 101–110 Zhu B, Varadan VK (2002) Integrated MOSFET-based hydrophone device for underwater applications. In: Proceedings of SPIE on smart structures and materials 2002: smart electronics, MEMS, and nanotechnology, vol 4700, pp 101–110
7.
go back to reference Gopikrishna M, Natarajan V, Kathiresan M (2005) Proceedings of international conference on MEMS and semiconductor nanotechnology, vol TM1.7. IIT, Kharagpur, pp 12–13 Gopikrishna M, Natarajan V, Kathiresan M (2005) Proceedings of international conference on MEMS and semiconductor nanotechnology, vol TM1.7. IIT, Kharagpur, pp 12–13
8.
go back to reference Fries D, Steimle G, Natarajan S, Vanova S, Broadbent H, Weller T () Maskless lithographic PCB/laminate MEMS for a salinity sensing system. University of South Florida, USA Fries D, Steimle G, Natarajan S, Vanova S, Broadbent H, Weller T () Maskless lithographic PCB/laminate MEMS for a salinity sensing system. University of South Florida, USA
9.
go back to reference Rajeev RA, Thomas KA, Natarajan V (2009) Design, fabrication and evaluation of ‘zero external field’ conductivity cell for CTD. Proceedings of SYMPOL 2009, pp. 128–132 Rajeev RA, Thomas KA, Natarajan V (2009) Design, fabrication and evaluation of ‘zero external field’ conductivity cell for CTD. Proceedings of SYMPOL 2009, pp. 128–132
10.
go back to reference Thomas KA, Rajeev RA, Natarajan V (2012) Low-cost flexible micro conductivity and temperature sensor for oceanography applications. In: 5th ISSS National Conference on MEMS, Smart Structures & Systems (2012), pp.17–22 Thomas KA, Rajeev RA, Natarajan V (2012) Low-cost flexible micro conductivity and temperature sensor for oceanography applications. In: 5th ISSS National Conference on MEMS, Smart Structures & Systems (2012), pp.17–22
11.
go back to reference Clark SK, Wise KD (1979) Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors. IEEE Trans Electron Devices 26(12):1887–1896CrossRef Clark SK, Wise KD (1979) Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors. IEEE Trans Electron Devices 26(12):1887–1896CrossRef
12.
go back to reference Barlian AA, Park SJ, Mukundan V, Pruitt BL (2005) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. In: Proceedings of IMECE 2005, pp 1–6 Barlian AA, Park SJ, Mukundan V, Pruitt BL (2005) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. In: Proceedings of IMECE 2005, pp 1–6
13.
go back to reference Barlian AA, Narain R, Li JT, Quance CE, Ho AC, Mukundan V, Pruitt BL () Piezoresistive MEMS underwater Shear Stress Sensors. In: MEMS 2006, Turkey, 22–26 Jan 2006, pp 626–629 Barlian AA, Narain R, Li JT, Quance CE, Ho AC, Mukundan V, Pruitt BL () Piezoresistive MEMS underwater Shear Stress Sensors. In: MEMS 2006, Turkey, 22–26 Jan 2006, pp 626–629
14.
go back to reference Horowitz S et al (2004) A wafer-bonded, floating element shear-stress sensor using a geometric moire optical transduction technique. In: Solid-state sensor, actuator and microsystems workshop, USA, 2004 Horowitz S et al (2004) A wafer-bonded, floating element shear-stress sensor using a geometric moire optical transduction technique. In: Solid-state sensor, actuator and microsystems workshop, USA, 2004
15.
go back to reference Saunvit P, Yingchen Y, Douglas LJ, Jonathan E, Chang L (2006) Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Appl Signal Process 2006(Article ID 76593):1–8 Saunvit P, Yingchen Y, Douglas LJ, Jonathan E, Chang L (2006) Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Appl Signal Process 2006(Article ID 76593):1–8
16.
go back to reference Diana ZM, Natarajan V, Elizabeth R (2009) Design and simulation of piezoresistive flow sensor. In: SENNET 2009, international conference on sensors and related networks, VITU, India Diana ZM, Natarajan V, Elizabeth R (2009) Design and simulation of piezoresistive flow sensor. In: SENNET 2009, international conference on sensors and related networks, VITU, India
17.
go back to reference Shipps JC, Abraham BM (2004) The use of vector sensors for underwater port and waterway security. In: Sensors for industry conference, New Orleans, USA, 27–29, pp 41–44, Jan 2004 Shipps JC, Abraham BM (2004) The use of vector sensors for underwater port and waterway security. In: Sensors for industry conference, New Orleans, USA, 27–29, pp 41–44, Jan 2004
18.
go back to reference Charles HS, John LB (2007) Transducers and arrays for underwater sound. Springer, Berlin Charles HS, John LB (2007) Transducers and arrays for underwater sound. Springer, Berlin
19.
go back to reference Chenyang X, Shang C, Wendong Z, Binzhen Z, Guojun Z, Hui Q (2007) Design fabrication and preliminary characterisation of a novel MEMS bionic vector hydrophone. Microelectron J 38:1021–1026CrossRef Chenyang X, Shang C, Wendong Z, Binzhen Z, Guojun Z, Hui Q (2007) Design fabrication and preliminary characterisation of a novel MEMS bionic vector hydrophone. Microelectron J 38:1021–1026CrossRef
20.
go back to reference Amarsinghe R, Dao DV, Toriyama T, Sugiyama S (2005) Design and fabrication of miniaturized six-degree of freedom piezoresistive accelerometer. In: MEMS 2005 conference, pp 351–354, 2005 Amarsinghe R, Dao DV, Toriyama T, Sugiyama S (2005) Design and fabrication of miniaturized six-degree of freedom piezoresistive accelerometer. In: MEMS 2005 conference, pp 351–354, 2005
21.
go back to reference van Kampen RP, Wolffenbuttel RF (1998) Modelling the mechanical behaviour of bulk-micromachined silicon accelerometers. Sens Actuators A 64:137–150CrossRef van Kampen RP, Wolffenbuttel RF (1998) Modelling the mechanical behaviour of bulk-micromachined silicon accelerometers. Sens Actuators A 64:137–150CrossRef
22.
go back to reference Roshna BR, Natarajan V () A novel MEMS vector sensor. In: ISSS-NC6, 6–7 Sep 2013, Pune, India Roshna BR, Natarajan V () A novel MEMS vector sensor. In: ISSS-NC6, 6–7 Sep 2013, Pune, India
23.
go back to reference Chenyang X, Shang C, Hui Q, Wendong Z, Jijun X, Binzhen Z, Guojun Z (2008) Development of a novel two axis piezoresistive micro accelerometer based on silicon. Sensor Lett 6:1–10 Chenyang X, Shang C, Hui Q, Wendong Z, Jijun X, Binzhen Z, Guojun Z (2008) Development of a novel two axis piezoresistive micro accelerometer based on silicon. Sensor Lett 6:1–10
24.
go back to reference Ladabaum X, Jin HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45:678–690CrossRef Ladabaum X, Jin HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45:678–690CrossRef
25.
go back to reference Omer O, Ergun AS, Cheng CH, Johnson JA, Karaman M, Khuri-Yakub BT (2002). Underwater acoustic imaging using capacitive micromachined ultrasonic transducer arrays. In: IEEE OCEANS’02, vol 4, pp 2354–2360 Omer O, Ergun AS, Cheng CH, Johnson JA, Karaman M, Khuri-Yakub BT (2002). Underwater acoustic imaging using capacitive micromachined ultrasonic transducer arrays. In: IEEE OCEANS’02, vol 4, pp 2354–2360
26.
go back to reference Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U, Kaviani K, Lee TH, Khuri-Yakub BT (2002) Capacitive micromachined ultrasonic transducers: next generation arrays for acoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49:1596–1610CrossRef Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U, Kaviani K, Lee TH, Khuri-Yakub BT (2002) Capacitive micromachined ultrasonic transducers: next generation arrays for acoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49:1596–1610CrossRef
27.
go back to reference Anil A, Ramgopal, Maheshkumar, Pant BD, Dwivedi VK, Chandrashekhar, Babar A, Rudrapratap, George PJ (2008) Fabrication of capacitive micromachined ultrasonic transducer using wafer bonding technique. Sens Transduc J 93(6):15–20 Anil A, Ramgopal, Maheshkumar, Pant BD, Dwivedi VK, Chandrashekhar, Babar A, Rudrapratap, George PJ (2008) Fabrication of capacitive micromachined ultrasonic transducer using wafer bonding technique. Sens Transduc J 93(6):15–20
28.
go back to reference Suresh G, Natarajan V, Srijith K, Raghavan S (2013) Design and modelling of 1 MHz CMUT for underwater applications. In: Acoustics 2013, New Delhi, India Suresh G, Natarajan V, Srijith K, Raghavan S (2013) Design and modelling of 1 MHz CMUT for underwater applications. In: Acoustics 2013, New Delhi, India
Metadata
Title
MEMS Sensors for Underwater Applications
Authors
V. Natarajan
M. Kathiresan
K. A. Thomas
Rajeev R. Ashokan
G. Suresh
E. Varadarajan
Shiny Nair
Copyright Year
2014
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-1913-2_29