Skip to main content
Top
Published in: Topics in Catalysis 2-4/2016

07-08-2015 | Original Paper

Mesopore-Modified SAPO-18 with Potential Use as Catalyst for the MTO Reaction

Authors: Teresa Álvaro-Muñoz, Carlos Márquez-Álvarez, Enrique Sastre

Published in: Topics in Catalysis | Issue 2-4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SAPO-34 silicoaluminophosphates are well known as catalysts for the synthesis of light olefins–ethylene and propylene–from methanol by using the methanol to olefins (MTO) process, first described by Mobil. SAPO-18, which has a microporous framework structure related to but crystallographically distinct from SAPO-34, has been much less studied but promises to be a potential catalyst in the MTO process. The main drawback of these catalysts in this reaction is their rapid deactivation, due to the deposition of heavy carbonaceous products–coke–on the surface of the solid avoiding the access of methanol molecules to the active centres located inside the pores of the SAPO catalysts. We have used different mesoporogen agents–nanoparticulate carbons and chitosan–aiming to generate mesoporosity in the SAPO-18 crystals, in an attempt to improve the accessibility of the reagent to the active centres of SAPO-18 and, in that way, inhibit catalyst deactivation. All the materials prepared in this work present similar framework composition and silicon distribution and the main difference among them is the hierarchical porosity generated by the mesoporogen additives use in the synthesis, as determined by STEM. Using chitosan polymer as a secondary template results in an increase of the external surface, which improved significantly the internal diffusivity enhancing the life time of the catalyst in the MTO process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498CrossRef Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498CrossRef
2.
go back to reference Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32CrossRef Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32CrossRef
3.
go back to reference Hamelinck CN, Faaji APC (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sour 111:1–22CrossRef Hamelinck CN, Faaji APC (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sour 111:1–22CrossRef
4.
go back to reference Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26(3–4):323–345CrossRef Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26(3–4):323–345CrossRef
5.
go back to reference Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259CrossRef Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259CrossRef
6.
go back to reference Chang CD, Silvestri AJ (1987) MTG: origin, evolution, operation. ChemTech 17:624–631 Chang CD, Silvestri AJ (1987) MTG: origin, evolution, operation. ChemTech 17:624–631
7.
go back to reference Chang CD, Silvestri AJ, Smith RL (1975) Aromatization reactions U. S. Patent 3(894):103 Chang CD, Silvestri AJ, Smith RL (1975) Aromatization reactions U. S. Patent 3(894):103
8.
go back to reference Kaeding WW, Butter SA (1980) Production of chemicals from methanol: I. Low molecular weight olefins. J Catal 61(1):155–164CrossRef Kaeding WW, Butter SA (1980) Production of chemicals from methanol: I. Low molecular weight olefins. J Catal 61(1):155–164CrossRef
9.
10.
go back to reference Inui T, Medhanavyn D, Praserthdam P, Fukuda Takayo K, Akira Sakamoto U, Miyamoto A (1985) Methanol conversion to hydrocarbons on novel vanadosilicate catalysts. Appl Catal 18(2):311–324CrossRef Inui T, Medhanavyn D, Praserthdam P, Fukuda Takayo K, Akira Sakamoto U, Miyamoto A (1985) Methanol conversion to hydrocarbons on novel vanadosilicate catalysts. Appl Catal 18(2):311–324CrossRef
11.
go back to reference Inui T, Miyamoto A, Matsuda H, Nagata H, Makino Y, Fukuda K, Okazumi F (1986) Stud Surf Sci Catal 28:859–866CrossRef Inui T, Miyamoto A, Matsuda H, Nagata H, Makino Y, Fukuda K, Okazumi F (1986) Stud Surf Sci Catal 28:859–866CrossRef
12.
go back to reference Howden MG (1985) Zeolite ZSM-5 containing boron instead of aluminium atoms in the framework. Zeolites 5(5):334–338CrossRef Howden MG (1985) Zeolite ZSM-5 containing boron instead of aluminium atoms in the framework. Zeolites 5(5):334–338CrossRef
13.
go back to reference Martin A, Nowak S, Lücke B, Wieker W, Fahlke B (1990) Coupled conversion of methanol and C4-hydrocarbons (CMHC) on iron-containing ZSM-5 type zeolites. Appl Catal 57(1):203–214CrossRef Martin A, Nowak S, Lücke B, Wieker W, Fahlke B (1990) Coupled conversion of methanol and C4-hydrocarbons (CMHC) on iron-containing ZSM-5 type zeolites. Appl Catal 57(1):203–214CrossRef
14.
go back to reference Luk’yanov DB (1992) Effect of SiO2Al2O3 ratio on the activity of HZSM-5 zeolites in the different steps of methanol conversion to hydrocarbons. Zeolites 12(3):287–291CrossRef Luk’yanov DB (1992) Effect of SiO2Al2O3 ratio on the activity of HZSM-5 zeolites in the different steps of methanol conversion to hydrocarbons. Zeolites 12(3):287–291CrossRef
15.
go back to reference Gayubo AG, Benito PL, Aguayo AT, Olazar M, Bilbao J (1996) Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. J Chem Technol Biotechnol 65(2):186–192CrossRef Gayubo AG, Benito PL, Aguayo AT, Olazar M, Bilbao J (1996) Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. J Chem Technol Biotechnol 65(2):186–192CrossRef
16.
go back to reference Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093CrossRef Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093CrossRef
17.
go back to reference Popova M, Minchev C, Kanazirev V (1998) Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources os silicon and aluminium. Appl Catal A 169:227–235CrossRef Popova M, Minchev C, Kanazirev V (1998) Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources os silicon and aluminium. Appl Catal A 169:227–235CrossRef
18.
go back to reference Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203CrossRef Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203CrossRef
19.
go back to reference Zhu Z, Hartmann M, Kevan L (2000) Catalytic conversion of methanol to olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr-SAPO-n molecular sieves. Chem Mater 12:2781–2787CrossRef Zhu Z, Hartmann M, Kevan L (2000) Catalytic conversion of methanol to olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr-SAPO-n molecular sieves. Chem Mater 12:2781–2787CrossRef
20.
go back to reference Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Use of different templates on SAPO-34 synthesis: effect on the acidity and catalytic activity in the MTO reaction. Catal Today 179(1):27–34CrossRef Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Use of different templates on SAPO-34 synthesis: effect on the acidity and catalytic activity in the MTO reaction. Catal Today 179(1):27–34CrossRef
21.
go back to reference Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins. Catal Today 213:219–225CrossRef Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins. Catal Today 213:219–225CrossRef
22.
go back to reference Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Enhanced stability in the methanol-to-olefins process shown by SAPO-34 catalysts synthesized in biphasic medium. Catal Today 215:208–215CrossRef Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Enhanced stability in the methanol-to-olefins process shown by SAPO-34 catalysts synthesized in biphasic medium. Catal Today 215:208–215CrossRef
23.
go back to reference Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A 472:72–79CrossRef Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A 472:72–79CrossRef
24.
go back to reference Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40CrossRef Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40CrossRef
25.
go back to reference Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48CrossRef Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48CrossRef
26.
go back to reference Li Z, Martinez-Triguero J, Concepcion P, Yu J, Corma A (2013) Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Phys Chem Chem Phys 15(35):14670–14680CrossRef Li Z, Martinez-Triguero J, Concepcion P, Yu J, Corma A (2013) Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Phys Chem Chem Phys 15(35):14670–14680CrossRef
27.
go back to reference Salmasi M, Fatemi S, Taheri Najafabadi A (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17(4):755–761CrossRef Salmasi M, Fatemi S, Taheri Najafabadi A (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17(4):755–761CrossRef
28.
go back to reference Álvaro-Muñoz T, Sastre E, Márquez-Álvarez C (2014) Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction. Catal Sci Technol 4:4330–4339CrossRef Álvaro-Muñoz T, Sastre E, Márquez-Álvarez C (2014) Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction. Catal Sci Technol 4:4330–4339CrossRef
29.
go back to reference Simmen A, McCusker LB, Baerlocher C, Meier WM (1991) The structure determination and Rietveld refinement of the aluminophosphate AlPO-18. Zeolites 11:654–661CrossRef Simmen A, McCusker LB, Baerlocher C, Meier WM (1991) The structure determination and Rietveld refinement of the aluminophosphate AlPO-18. Zeolites 11:654–661CrossRef
30.
go back to reference Hinsen W, Bytyn W, Baerns M (1984) Paper presented at the Proceedings of the 8th International Congress on Catalysis, Berlin Hinsen W, Bytyn W, Baerns M (1984) Paper presented at the Proceedings of the 8th International Congress on Catalysis, Berlin
31.
go back to reference Chen J, Wright PA, Thomas JM, Natarajan S, Marchese L, Bradley SM, Sankar G, Catlow CRA, Gal-Boyes PL, Townsend RP, Lok CM (1994) SAPO-18 catalysts and their Brönsted acid sites. J Phys Chem 98:10216–10224CrossRef Chen J, Wright PA, Thomas JM, Natarajan S, Marchese L, Bradley SM, Sankar G, Catlow CRA, Gal-Boyes PL, Townsend RP, Lok CM (1994) SAPO-18 catalysts and their Brönsted acid sites. J Phys Chem 98:10216–10224CrossRef
32.
go back to reference Wendelbo R, Akporiaye D, Andersen A, Dahl IM, Mostad HB (1996) Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Appl Catal A 142(2):L197–L207CrossRef Wendelbo R, Akporiaye D, Andersen A, Dahl IM, Mostad HB (1996) Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Appl Catal A 142(2):L197–L207CrossRef
33.
go back to reference Gayubo AG, Aguayo AT, Alonso A, Bilbao J (2007) Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind Eng Chem Res 46(7):1981–1989CrossRef Gayubo AG, Aguayo AT, Alonso A, Bilbao J (2007) Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind Eng Chem Res 46(7):1981–1989CrossRef
34.
go back to reference Wilson S, Barger P (1999) The characteristics of SAPO-34 which influence the conversion of methanol to light olefin. Microporous Mesoporous Mater 29:117–126CrossRef Wilson S, Barger P (1999) The characteristics of SAPO-34 which influence the conversion of methanol to light olefin. Microporous Mesoporous Mater 29:117–126CrossRef
35.
go back to reference Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater 164:239–250CrossRef Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater 164:239–250CrossRef
36.
go back to reference Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106(3):896–910CrossRef Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106(3):896–910CrossRef
37.
go back to reference van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45(2):297–319CrossRef van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45(2):297–319CrossRef
38.
go back to reference Groen JC, Moulijn JA, Perez-Ramirez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16(22):2121–2131CrossRef Groen JC, Moulijn JA, Perez-Ramirez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16(22):2121–2131CrossRef
39.
go back to reference Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem Eur J 11(17):4983–4994CrossRef Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem Eur J 11(17):4983–4994CrossRef
40.
go back to reference Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with zeolitic microporous frameworks. J Am Chem Soc 121:4308–4309CrossRef Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with zeolitic microporous frameworks. J Am Chem Soc 121:4308–4309CrossRef
41.
go back to reference Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117CrossRef Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117CrossRef
42.
go back to reference Kustova MY, Hasselriis P, Christensen CH (2004) Mesoporous MEL: type zeolite single crystal catalysts. Catal Lett 96(3–4):205–211CrossRef Kustova MY, Hasselriis P, Christensen CH (2004) Mesoporous MEL: type zeolite single crystal catalysts. Catal Lett 96(3–4):205–211CrossRef
43.
go back to reference Kustova M, Egeblad K, Christensen CH, Kustov AL, Christensen CH (2007) Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Stud Surf Sci Catal 170(A):267–275CrossRef Kustova M, Egeblad K, Christensen CH, Kustov AL, Christensen CH (2007) Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Stud Surf Sci Catal 170(A):267–275CrossRef
44.
go back to reference Wei X, Smirniotis PG (2006) Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous Mesoporous Mater 89(1–3):170–178CrossRef Wei X, Smirniotis PG (2006) Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous Mesoporous Mater 89(1–3):170–178CrossRef
45.
go back to reference Tao Y, Kanoh H, Kaneko K (2003) Uniform mesopore-donated zeolite Y using carbon aerogel templating. J Phys Chem B 107:10974–10976CrossRef Tao Y, Kanoh H, Kaneko K (2003) Uniform mesopore-donated zeolite Y using carbon aerogel templating. J Phys Chem B 107:10974–10976CrossRef
46.
go back to reference Egeblad K, Kustova M, Klitgaard SK, Zhu K, Christensen CH (2007) Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Microporous Mesoporous Mater 101(1–2):214–223CrossRef Egeblad K, Kustova M, Klitgaard SK, Zhu K, Christensen CH (2007) Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Microporous Mesoporous Mater 101(1–2):214–223CrossRef
47.
go back to reference Kustova M, Egeblad K, Zhu K, Christensen CH (2007) Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chem Mater 19(12):2915–2917CrossRef Kustova M, Egeblad K, Zhu K, Christensen CH (2007) Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chem Mater 19(12):2915–2917CrossRef
48.
go back to reference Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRef Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRef
49.
go back to reference Fajardo HV, Martins AO, de Almeida RM, Noda LK, Probst LFD, Carreño NLV, Valentini A (2005) Synthesis of mesoporous Al2O3 macrospheres using the biopolymer chitosan as a template: a novel active catalyst system for CO2 reforming of methane. Mater Lett 59(29–30):3963–3967CrossRef Fajardo HV, Martins AO, de Almeida RM, Noda LK, Probst LFD, Carreño NLV, Valentini A (2005) Synthesis of mesoporous Al2O3 macrospheres using the biopolymer chitosan as a template: a novel active catalyst system for CO2 reforming of methane. Mater Lett 59(29–30):3963–3967CrossRef
50.
go back to reference Witoon T, Chareonpanich M, Limtrakul J (2008) Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template. Mater Lett 62(10–11):1476–1479CrossRef Witoon T, Chareonpanich M, Limtrakul J (2008) Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template. Mater Lett 62(10–11):1476–1479CrossRef
51.
go back to reference Hidrobo A, Retuert J, Araya P (2003) Stable zeolite-containing mesoporous aluminosilicates. J Porous Mater 10:231–234CrossRef Hidrobo A, Retuert J, Araya P (2003) Stable zeolite-containing mesoporous aluminosilicates. J Porous Mater 10:231–234CrossRef
52.
go back to reference Braga TP, Gomes ECC, Sousa AFd, Carreño NLV, Longhinotti E, Valentini A (2009) Synthesis of hybrid mesoporous spheres using the chitosan as template. J NonCryst Solids 355(14–15):860–866CrossRef Braga TP, Gomes ECC, Sousa AFd, Carreño NLV, Longhinotti E, Valentini A (2009) Synthesis of hybrid mesoporous spheres using the chitosan as template. J NonCryst Solids 355(14–15):860–866CrossRef
53.
go back to reference Dubois V, Dal Y, Jannes G (2002) Active carbon surface oxidation to optimize the support functionality and metallic dispersion of a Pd/C catalyst. Stud Surf Sci Catal 143:993–1002CrossRef Dubois V, Dal Y, Jannes G (2002) Active carbon surface oxidation to optimize the support functionality and metallic dispersion of a Pd/C catalyst. Stud Surf Sci Catal 143:993–1002CrossRef
54.
go back to reference He H, Klinowski J (1993) Solid-state NMR studies of the aluminophosphate molecular sieve AlPO4-18. J Phys Chem 97(40):10385–10388CrossRef He H, Klinowski J (1993) Solid-state NMR studies of the aluminophosphate molecular sieve AlPO4-18. J Phys Chem 97(40):10385–10388CrossRef
55.
go back to reference Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57(2):157–168CrossRef Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57(2):157–168CrossRef
56.
go back to reference Christensen CH, Schmidt I, Carlsson A, Johannsen K, Herbst K (2005) Crystals in crystalsnanocrystals within mesoporous zeolite single crystals. J Am Chem Soc 127(22):8098–8102CrossRef Christensen CH, Schmidt I, Carlsson A, Johannsen K, Herbst K (2005) Crystals in crystalsnanocrystals within mesoporous zeolite single crystals. J Am Chem Soc 127(22):8098–8102CrossRef
57.
go back to reference Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater 65(1):59–75CrossRef Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater 65(1):59–75CrossRef
58.
go back to reference del Val S, Blasco T, Sastre E, Pérez-Pariente J (1995) Synthesis of SiVPI-5 with enhanced activity in acid catalysed reactions. J Chem Soc Chem Commun 7:731–732CrossRef del Val S, Blasco T, Sastre E, Pérez-Pariente J (1995) Synthesis of SiVPI-5 with enhanced activity in acid catalysed reactions. J Chem Soc Chem Commun 7:731–732CrossRef
59.
go back to reference Martens JA, Janssens C, Grobet PJ, Beyer HK, Jacobs PA (1989) Stud Surf Sci Catal 49:215–225CrossRef Martens JA, Janssens C, Grobet PJ, Beyer HK, Jacobs PA (1989) Stud Surf Sci Catal 49:215–225CrossRef
60.
go back to reference Prakash AM, Unnikrishnan S, Rao KV (1994) Synthesis and characterization of silicon-rich SAPO-44 molecular sieves. Appl Catal A 110:1–10CrossRef Prakash AM, Unnikrishnan S, Rao KV (1994) Synthesis and characterization of silicon-rich SAPO-44 molecular sieves. Appl Catal A 110:1–10CrossRef
61.
go back to reference Janssens TVW (2009) A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. J Catal 264(2):130–137CrossRef Janssens TVW (2009) A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. J Catal 264(2):130–137CrossRef
62.
go back to reference Chen D, Rebo HP, Moljord K, Holmen A (1999) Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Ind Eng Chem Res 38(11):4241–4249CrossRef Chen D, Rebo HP, Moljord K, Holmen A (1999) Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Ind Eng Chem Res 38(11):4241–4249CrossRef
63.
go back to reference Wu X, Abraha MG, Anthony RG (2004) Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Appl Catal A 260(1):63–69CrossRef Wu X, Abraha MG, Anthony RG (2004) Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Appl Catal A 260(1):63–69CrossRef
Metadata
Title
Mesopore-Modified SAPO-18 with Potential Use as Catalyst for the MTO Reaction
Authors
Teresa Álvaro-Muñoz
Carlos Márquez-Álvarez
Enrique Sastre
Publication date
07-08-2015
Publisher
Springer US
Published in
Topics in Catalysis / Issue 2-4/2016
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0447-0

Other articles of this Issue 2-4/2016

Topics in Catalysis 2-4/2016 Go to the issue

Premium Partners