Skip to main content
Top

2020 | OriginalPaper | Chapter

Metal–Organic Frameworks for Electrocatalysis

Authors : Muhammad Usman, Qi-Long Zhu

Published in: Methods for Electrocatalysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal–organic frameworks (MOFs) have recently become prospective materials for electrocatalysis. MOFs constructed via coordination chemistry of inorganic metal nodes and organic ligands, possess the exclusive features over traditional inorganic or organic materials, which include ultrahigh porosity, large surface areas, structural tunability and high stability. Based on these features, MOFs are already being applied in storage and separation, catalysis, optoelectronics, drug delivery and biomedical imaging. Particularly, with the advantageous feature, MOFs have potential to work as efficient electrocatalysts for a variety of redox reactions, such as hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), etc. In this chapter, a discussion has been presented on MOFs, their composites, MOF-derived carbon materials and their performance as electrocatalysts. This chapter will inspire new research direction regarding the development of advanced electrocatalytic materials using MOFs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444
2.
go back to reference Schröder M (2010) Functional metal-organic frameworks: gas storage, separation and catalysis, 1st edn. Springer, BerlinCrossRef Schröder M (2010) Functional metal-organic frameworks: gas storage, separation and catalysis, 1st edn. Springer, BerlinCrossRef
3.
go back to reference Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638CrossRef Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H-C (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638CrossRef
4.
go back to reference Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2:52–80CrossRef Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2:52–80CrossRef
5.
go back to reference Zhou HC, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418CrossRef Zhou HC, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418CrossRef
6.
go back to reference Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593 Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593
7.
go back to reference Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912CrossRef Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912CrossRef
8.
go back to reference Farha OK, Wilmer CE, Eryazici I, Hauser BG, Parilla PA, O’Neill K, Sarjeant AA, Nguyen ST, Snurr RQ, Hupp JT (2012) Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls? J Am Chem Soc 134:9860–9863CrossRef Farha OK, Wilmer CE, Eryazici I, Hauser BG, Parilla PA, O’Neill K, Sarjeant AA, Nguyen ST, Snurr RQ, Hupp JT (2012) Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls? J Am Chem Soc 134:9860–9863CrossRef
9.
go back to reference Hendon CH, Rieth AJ, Korzyński MD, Dincă M (2017) Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci 3:554–563CrossRef Hendon CH, Rieth AJ, Korzyński MD, Dincă M (2017) Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci 3:554–563CrossRef
10.
go back to reference Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021CrossRef Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021CrossRef
11.
go back to reference Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018CrossRef Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018CrossRef
12.
go back to reference Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA (2015) Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev 44:6774–6803 Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA (2015) Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev 44:6774–6803
13.
go back to reference Kobayashi Y, Jacobs B, Allendorf MD, Long JR (2010) Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal–organic framework. Chem Mater 22:4120–4122CrossRef Kobayashi Y, Jacobs B, Allendorf MD, Long JR (2010) Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal–organic framework. Chem Mater 22:4120–4122CrossRef
14.
go back to reference Hendon CH, Tiana D, Walsh A (2012) Conductive metal–organic frameworks and networks: fact or fantasy? Phys Chem Chem Phys 14:13120–13132CrossRef Hendon CH, Tiana D, Walsh A (2012) Conductive metal–organic frameworks and networks: fact or fantasy? Phys Chem Chem Phys 14:13120–13132CrossRef
15.
go back to reference Stavila V, Talin AA, Allendorf MD (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010CrossRef Stavila V, Talin AA, Allendorf MD (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010CrossRef
16.
go back to reference Silva CG, Corma A, García H (2010) Metal–organic frameworks as semiconductors. J Mater Chem 20:3141–3156CrossRef Silva CG, Corma A, García H (2010) Metal–organic frameworks as semiconductors. J Mater Chem 20:3141–3156CrossRef
17.
go back to reference Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66CrossRef Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66CrossRef
18.
go back to reference Sheberla D, Bachman JC, Elias JS, Sun C-J, Shao-Horn Y, Dincă M (2016) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220CrossRef Sheberla D, Bachman JC, Elias JS, Sun C-J, Shao-Horn Y, Dincă M (2016) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220CrossRef
19.
go back to reference Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc 136:8859–8862CrossRef Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc 136:8859–8862CrossRef
20.
go back to reference Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M (2016) Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun 7:10942CrossRef Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M (2016) Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat Commun 7:10942CrossRef
21.
go back to reference Pathak A, Shen J-W, Usman M, Wei L-F, Mendiratta S, Chang Y-S, Sainbileg B, Ngue C-M, Chen R-S, Hayashi M, Luo T-T, Chen F-R, Chen K-H, Tseng T-W, Chen L-C, Lu K-L (2019) Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nat Commun 10:1721CrossRef Pathak A, Shen J-W, Usman M, Wei L-F, Mendiratta S, Chang Y-S, Sainbileg B, Ngue C-M, Chen R-S, Hayashi M, Luo T-T, Chen F-R, Chen K-H, Tseng T-W, Chen L-C, Lu K-L (2019) Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nat Commun 10:1721CrossRef
22.
go back to reference Usman M, Mendiratta S, Lu K-L (2017) Semiconductor metal-organic frameworks: future low-bandgap materials. Adv Mater 29:1605071CrossRef Usman M, Mendiratta S, Lu K-L (2017) Semiconductor metal-organic frameworks: future low-bandgap materials. Adv Mater 29:1605071CrossRef
23.
go back to reference Sivula K, van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1:15010CrossRef Sivula K, van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1:15010CrossRef
24.
25.
go back to reference Guan BY, Yu L, Lou XW (2016) A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ Sci 9:3092–3096CrossRef Guan BY, Yu L, Lou XW (2016) A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ Sci 9:3092–3096CrossRef
26.
go back to reference Petit C, Bandosz TJ (2009) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757CrossRef Petit C, Bandosz TJ (2009) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757CrossRef
27.
go back to reference Dang S, Zhu Q-L, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:17075CrossRef Dang S, Zhu Q-L, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:17075CrossRef
28.
go back to reference Xu L, Wang X, Chai L, Li T-T, Hu Y, Qian J, Huang S (2019) Co3O4-anchored MWCNTs network derived from metal–organic frameworks as efficient OER electrocatalysts. Mater Lett Xu L, Wang X, Chai L, Li T-T, Hu Y, Qian J, Huang S (2019) Co3O4-anchored MWCNTs network derived from metal–organic frameworks as efficient OER electrocatalysts. Mater Lett
29.
go back to reference Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139:14143–14149CrossRef Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139:14143–14149CrossRef
30.
go back to reference Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512CrossRef Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512CrossRef
31.
go back to reference Ko M, Mendecki L, Mirica KA (2018) Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem Commun 54:7873–7891CrossRef Ko M, Mendecki L, Mirica KA (2018) Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem Commun 54:7873–7891CrossRef
32.
go back to reference Yang HM, Song XL, Yang TL, Liang ZH, Fan CM, Hao XG (2014) Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv 4:15720–15726CrossRef Yang HM, Song XL, Yang TL, Liang ZH, Fan CM, Hao XG (2014) Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv 4:15720–15726CrossRef
33.
go back to reference Gong Y, Hao Z, Meng J, Shi H, Jiang P, Zhang M, Lin J (2014) Two CoII metal-organic frameworks based on a multicarboxylate ligand as electrocatalysts for water splitting. ChemPlusChem 79:266–277CrossRef Gong Y, Hao Z, Meng J, Shi H, Jiang P, Zhang M, Lin J (2014) Two CoII metal-organic frameworks based on a multicarboxylate ligand as electrocatalysts for water splitting. ChemPlusChem 79:266–277CrossRef
34.
go back to reference Gong Y, Shi H-F, Hao Z, Sun J-L, Lin J-H (2013) Two novel Co(ii) coordination polymers based on 1,4-bis(3-pyridylaminomethyl)benzene as electrocatalysts for oxygen evolution from water. Dalton Trans 42:12252–12259CrossRef Gong Y, Shi H-F, Hao Z, Sun J-L, Lin J-H (2013) Two novel Co(ii) coordination polymers based on 1,4-bis(3-pyridylaminomethyl)benzene as electrocatalysts for oxygen evolution from water. Dalton Trans 42:12252–12259CrossRef
35.
go back to reference Wu Y-P, Zhou W, Zhao J, Dong W-W, Lan Y-Q, Li D-S, Sun C, Bu X (2017) Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chem Int Ed 56:13001–13005CrossRef Wu Y-P, Zhou W, Zhao J, Dong W-W, Lan Y-Q, Li D-S, Sun C, Bu X (2017) Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chem Int Ed 56:13001–13005CrossRef
36.
go back to reference Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67CrossRef Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67CrossRef
37.
go back to reference Tao L, Lin C-Y, Dou S, Feng S, Chen D, Liu D, Huo J, Xia Z, Wang S (2017) Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: insights into the active centers. Nano Energy 41:417–425CrossRef Tao L, Lin C-Y, Dou S, Feng S, Chen D, Liu D, Huo J, Xia Z, Wang S (2017) Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: insights into the active centers. Nano Energy 41:417–425CrossRef
38.
go back to reference Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934CrossRef Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934CrossRef
39.
go back to reference Wang L, Wu Y, Cao R, Ren L, Chen M, Feng X, Zhou J, Wang B (2016) Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS Appl Mater Interfaces 8:16736–16743CrossRef Wang L, Wu Y, Cao R, Ren L, Chen M, Feng X, Zhou J, Wang B (2016) Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS Appl Mater Interfaces 8:16736–16743CrossRef
40.
go back to reference Xue Z, Li Y, Zhang Y, Geng W, Jia B, Tang J, Bao S, Wang H-P, Fan Y, Wei Z-W, Zhang Z, Ke Z, Li G, Su C-Y (2018) Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution. Adv Energy Mater 8:1801564CrossRef Xue Z, Li Y, Zhang Y, Geng W, Jia B, Tang J, Bao S, Wang H-P, Fan Y, Wei Z-W, Zhang Z, Ke Z, Li G, Su C-Y (2018) Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution. Adv Energy Mater 8:1801564CrossRef
41.
go back to reference Wang X-L, Dong L-Z, Qiao M, Tang Y-J, Liu J, Li Y, Li S-L, Su J-X, Lan Y-Q (2018) Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed 57:9660–9664CrossRef Wang X-L, Dong L-Z, Qiao M, Tang Y-J, Liu J, Li Y, Li S-L, Su J-X, Lan Y-Q (2018) Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed 57:9660–9664CrossRef
42.
go back to reference Zhou W, Huang D-D, Wu Y-P, Zhao J, Wu T, Zhang J, Li D-S, Sun C, Feng P, Bu X (2019) Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 58:4227–4231CrossRef Zhou W, Huang D-D, Wu Y-P, Zhao J, Wu T, Zhang J, Li D-S, Sun C, Feng P, Bu X (2019) Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 58:4227–4231CrossRef
43.
go back to reference Li F-L, Shao Q, Huang X, Lang J-P (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 57:1888–1892CrossRef Li F-L, Shao Q, Huang X, Lang J-P (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 57:1888–1892CrossRef
44.
go back to reference Lu X-F, Liao P-Q, Wang J-W, Wu J-X, Chen X-W, He C-T, Zhang J-P, Li G-R, Chen X-M (2016) An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138:8336–8339CrossRef Lu X-F, Liao P-Q, Wang J-W, Wu J-X, Chen X-W, He C-T, Zhang J-P, Li G-R, Chen X-M (2016) An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138:8336–8339CrossRef
45.
go back to reference Mao J, Yang L, Yu P, Wei X, Mao L (2012) Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem Commun 19:29–31CrossRef Mao J, Yang L, Yu P, Wei X, Mao L (2012) Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem Commun 19:29–31CrossRef
46.
go back to reference Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ (2017) Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl Mater Interfaces 9:33539–33543CrossRef Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ (2017) Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl Mater Interfaces 9:33539–33543CrossRef
47.
go back to reference Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin J Catal 35:185–195CrossRef Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin J Catal 35:185–195CrossRef
48.
go back to reference Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10:1100–1109CrossRef Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10:1100–1109CrossRef
49.
go back to reference Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137:14129–14135CrossRef Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137:14129–14135CrossRef
50.
go back to reference Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121CrossRef Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121CrossRef
51.
go back to reference Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X (2015) Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed 54:12058–12063CrossRef Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X (2015) Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed 54:12058–12063CrossRef
52.
go back to reference Dong R, Zheng Z, Tranca DC, Zhang J, Chandrasekhar N, Liu S, Zhuang X, Seifert G, Feng X (2017) Immobilizing molecular metal dithiolene–diamine complexes on 2D metal–organic frameworks for electrocatalytic H2 production. Chem-A Eur J 23:2255–2260 Dong R, Zheng Z, Tranca DC, Zhang J, Chandrasekhar N, Liu S, Zhuang X, Seifert G, Feng X (2017) Immobilizing molecular metal dithiolene–diamine complexes on 2D metal–organic frameworks for electrocatalytic H2 production. Chem-A Eur J 23:2255–2260
53.
go back to reference Qin J-S, Du D-Y, Guan W, Bo X-J, Li Y-F, Guo L-P, Su Z-M, Wang Y-Y, Lan Y-Q, Zhou H-C (2015) Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 137:7169–7177CrossRef Qin J-S, Du D-Y, Guan W, Bo X-J, Li Y-F, Guo L-P, Su Z-M, Wang Y-Y, Lan Y-Q, Zhou H-C (2015) Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 137:7169–7177CrossRef
54.
go back to reference Jiang J, Huang L, Liu X, Ai L (2017) Bioinspired cobalt-citrate metal–organic framework as an efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 9:7193–7201CrossRef Jiang J, Huang L, Liu X, Ai L (2017) Bioinspired cobalt-citrate metal–organic framework as an efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 9:7193–7201CrossRef
55.
go back to reference Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, Xie X, Chen B, Liu Z, Wang X, Zhang H, Li H, Liu J, Zhang H, Huang X, Huang W (2017) Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11:5800–5807CrossRef Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, Xie X, Chen B, Liu Z, Wang X, Zhang H, Li H, Liu J, Zhang H, Huang X, Huang W (2017) Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11:5800–5807CrossRef
56.
go back to reference Xu Q, Li H, Yue F, Chi L, Wang J (2016) Nanoscale cobalt metal–organic framework as a catalyst for visible light-driven and electrocatalytic water oxidation. New J Chem 40:3032–3035CrossRef Xu Q, Li H, Yue F, Chi L, Wang J (2016) Nanoscale cobalt metal–organic framework as a catalyst for visible light-driven and electrocatalytic water oxidation. New J Chem 40:3032–3035CrossRef
57.
go back to reference Wang H, Yin F-X, Chen B-H, He X-B, Lv P-L, Ye C-Y, Liu D-J (2017) ZIF-67 incorporated with carbon derived from pomelo peels: a highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl Catal B 205:55–67CrossRef Wang H, Yin F-X, Chen B-H, He X-B, Lv P-L, Ye C-Y, Liu D-J (2017) ZIF-67 incorporated with carbon derived from pomelo peels: a highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl Catal B 205:55–67CrossRef
58.
go back to reference Shen J-Q, Liao P-Q, Zhou D-D, He C-T, Wu J-X, Zhang W-X, Zhang J-P, Chen X-M (2017) Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 139:1778–1781CrossRef Shen J-Q, Liao P-Q, Zhou D-D, He C-T, Wu J-X, Zhang W-X, Zhang J-P, Chen X-M (2017) Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 139:1778–1781CrossRef
59.
go back to reference Gong Y, Shi H-F, Jiang P-G, Hua W, Lin J-H (2014) Metal(II)-induced coordination polymer based on 4-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)benzoate as an electrocatalyst for water splitting. Cryst Growth Des 14:649–657CrossRef Gong Y, Shi H-F, Jiang P-G, Hua W, Lin J-H (2014) Metal(II)-induced coordination polymer based on 4-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)benzoate as an electrocatalyst for water splitting. Cryst Growth Des 14:649–657CrossRef
60.
go back to reference Dai F, Fan W, Bi J, Jiang P, Liu D, Zhang X, Lin H, Gong C, Wang R, Zhang L, Sun D (2016) A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans 45:61–65CrossRef Dai F, Fan W, Bi J, Jiang P, Liu D, Zhang X, Lin H, Gong C, Wang R, Zhang L, Sun D (2016) A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans 45:61–65CrossRef
61.
go back to reference Lions M, Tommasino JB, Chattot R, Abeykoon B, Guillou N, Devic T, Demessence A, Cardenas L, Maillard F, Fateeva A (2017) Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chem Commun 53:6496–6499CrossRef Lions M, Tommasino JB, Chattot R, Abeykoon B, Guillou N, Devic T, Demessence A, Cardenas L, Maillard F, Fateeva A (2017) Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chem Commun 53:6496–6499CrossRef
62.
go back to reference Cho K, Han S-H, Suh MP (2016) Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew Chem Int Ed 55:15301–15305CrossRef Cho K, Han S-H, Suh MP (2016) Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew Chem Int Ed 55:15301–15305CrossRef
63.
go back to reference Miao P, Li G, Zhang G, Lu H (2014) Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen. J Energy Chem 23:507–512CrossRef Miao P, Li G, Zhang G, Lu H (2014) Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen. J Energy Chem 23:507–512CrossRef
64.
go back to reference Dai X, Liu M, Li Z, Jin A, Ma Y, Huang X, Sun H, Wang H, Zhang X (2016) Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction. J Phys Chem C 120:12539–12548CrossRef Dai X, Liu M, Li Z, Jin A, Ma Y, Huang X, Sun H, Wang H, Zhang X (2016) Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction. J Phys Chem C 120:12539–12548CrossRef
65.
go back to reference Johnson BA, Bhunia A, Ott S (2017) Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Trans 46:1382–1388CrossRef Johnson BA, Bhunia A, Ott S (2017) Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Trans 46:1382–1388CrossRef
66.
go back to reference Lin S, Pineda-Galvan Y, Maza WA, Epley CC, Zhu J, Kessinger MC, Pushkar Y, Morris AJ (2017) Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. ChemSusChem 10:514–522CrossRef Lin S, Pineda-Galvan Y, Maza WA, Epley CC, Zhu J, Kessinger MC, Pushkar Y, Morris AJ (2017) Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. ChemSusChem 10:514–522CrossRef
67.
go back to reference Khan MI, Swenson LS (2013) Open-framework hybrid materials and composites from polyoxometalates (Chap. 2). In: New and future developments in catalysis. Elsevier Science Khan MI, Swenson LS (2013) Open-framework hybrid materials and composites from polyoxometalates (Chap. 2). In: New and future developments in catalysis. Elsevier Science
68.
go back to reference Nohra B, El Moll H, Rodriguez Albelo LM, Mialane P, Marrot J, Mellot-Draznieks C, O’Keeffe M, Ngo Biboum R, Lemaire J, Keita B, Nadjo L, Dolbecq A (2011) Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J Am Chem Soc 133:13363–13374CrossRef Nohra B, El Moll H, Rodriguez Albelo LM, Mialane P, Marrot J, Mellot-Draznieks C, O’Keeffe M, Ngo Biboum R, Lemaire J, Keita B, Nadjo L, Dolbecq A (2011) Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J Am Chem Soc 133:13363–13374CrossRef
69.
go back to reference Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem Soc Rev 43:4615–4632CrossRef Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem Soc Rev 43:4615–4632CrossRef
70.
go back to reference Salomon W, Paille G, Gomez-Mingot M, Mialane P, Marrot J, Roch-Marchal C, Nocton G, Mellot-Draznieks C, Fontecave M, Dolbecq A (2017) Effect of cations on the structure and electrocatalytic response of polyoxometalate-based coordination polymers. Cryst Growth Des 17:1600–1609CrossRef Salomon W, Paille G, Gomez-Mingot M, Mialane P, Marrot J, Roch-Marchal C, Nocton G, Mellot-Draznieks C, Fontecave M, Dolbecq A (2017) Effect of cations on the structure and electrocatalytic response of polyoxometalate-based coordination polymers. Cryst Growth Des 17:1600–1609CrossRef
71.
go back to reference Jahan M, Liu Z, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23:5363–5372CrossRef Jahan M, Liu Z, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23:5363–5372CrossRef
72.
go back to reference Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201CrossRef Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201CrossRef
73.
go back to reference Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213CrossRef Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213CrossRef
74.
go back to reference Zhu Q-L, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220–245CrossRef Zhu Q-L, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220–245CrossRef
75.
go back to reference Guo J, Zhang X, Sun Y, Tang L, Liu Q, Zhang X (2017) Loading Pt nanoparticles on metal-organic frameworks for improved oxygen evolution. ACS Sustain Chem Eng 5:11577–11583CrossRef Guo J, Zhang X, Sun Y, Tang L, Liu Q, Zhang X (2017) Loading Pt nanoparticles on metal-organic frameworks for improved oxygen evolution. ACS Sustain Chem Eng 5:11577–11583CrossRef
76.
go back to reference Hod I, Deria P, Bury W, Mondloch JE, Kung C-W, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304CrossRef Hod I, Deria P, Bury W, Mondloch JE, Kung C-W, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304CrossRef
77.
go back to reference Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:16168–16176CrossRef Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:16168–16176CrossRef
78.
go back to reference Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184CrossRef Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184CrossRef
79.
go back to reference Duan J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:15341CrossRef Duan J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:15341CrossRef
80.
go back to reference Li W, Watzele S, El-Sayed HA, Liang Y, Kieslich G, Bandarenka AS, Rodewald K, Rieger B, Fischer RA (2019) Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal-organic frameworks. J Am Chem Soc 141:5926–5933CrossRef Li W, Watzele S, El-Sayed HA, Liang Y, Kieslich G, Bandarenka AS, Rodewald K, Rieger B, Fischer RA (2019) Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal-organic frameworks. J Am Chem Soc 141:5926–5933CrossRef
81.
go back to reference Cao C, Ma D-D, Xu Q, Wu X-T, Zhu Q-L (2019) Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater 29:1807418CrossRef Cao C, Ma D-D, Xu Q, Wu X-T, Zhu Q-L (2019) Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater 29:1807418CrossRef
82.
go back to reference Senthil Raja D, Chuah X-F, Lu S-Y (2018) In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv Energy Mater 8:1801065CrossRef Senthil Raja D, Chuah X-F, Lu S-Y (2018) In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv Energy Mater 8:1801065CrossRef
83.
go back to reference Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y (2018) NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater 8:1800584CrossRef Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y (2018) NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater 8:1800584CrossRef
84.
go back to reference Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrogen Energy 39:16179–16186CrossRef Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrogen Energy 39:16179–16186CrossRef
85.
go back to reference He X, Yin F, Li G (2015) A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. Int J Hydrogen Energy 40:9713–9722CrossRef He X, Yin F, Li G (2015) A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. Int J Hydrogen Energy 40:9713–9722CrossRef
86.
go back to reference Sohrabi S, Dehghanpour S, Ghalkhani M (2016) Three-dimensional metal-organic framework graphene nanocomposite as a highly efficient and stable electrocatalyst for the oxygen reduction reaction in acidic media. ChemCatChem 8:2356–2366CrossRef Sohrabi S, Dehghanpour S, Ghalkhani M (2016) Three-dimensional metal-organic framework graphene nanocomposite as a highly efficient and stable electrocatalyst for the oxygen reduction reaction in acidic media. ChemCatChem 8:2356–2366CrossRef
87.
go back to reference Jiang M, Li L, Zhu D, Zhang H, Zhao X (2014) Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator. J Mater Chem A 2:5323–5329CrossRef Jiang M, Li L, Zhu D, Zhang H, Zhao X (2014) Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator. J Mater Chem A 2:5323–5329CrossRef
88.
go back to reference Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391CrossRef Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391CrossRef
89.
go back to reference Lei Y, Wei L, Zhai S, Wang Y, Karahan HE, Chen X, Zhou Z, Wang C, Sui X, Chen Y (2018) Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Mater Chem Front 2:102–111CrossRef Lei Y, Wei L, Zhai S, Wang Y, Karahan HE, Chen X, Zhou Z, Wang C, Sui X, Chen Y (2018) Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Mater Chem Front 2:102–111CrossRef
90.
go back to reference Yang Y, Lun Z, Xia G, Zheng F, He M, Chen Q (2015) Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ Sci 8:3563–3571CrossRef Yang Y, Lun Z, Xia G, Zheng F, He M, Chen Q (2015) Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ Sci 8:3563–3571CrossRef
91.
go back to reference Zheng F, Xia H, Xu S, Wang R, Zhang Y (2016) Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Adv 6:71767–71772CrossRef Zheng F, Xia H, Xu S, Wang R, Zhang Y (2016) Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Adv 6:71767–71772CrossRef
92.
go back to reference Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150CrossRef Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150CrossRef
93.
go back to reference Tabassum H, Guo W, Meng W, Mahmood A, Zhao R, Wang Q, Zou R (2017) Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater 7:1601671CrossRef Tabassum H, Guo W, Meng W, Mahmood A, Zhao R, Wang Q, Zou R (2017) Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater 7:1601671CrossRef
94.
go back to reference Zhu Z, Yang Y, Guan Y, Xue J, Cui L (2016) Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J Mater Chem A 4:15536–15545CrossRef Zhu Z, Yang Y, Guan Y, Xue J, Cui L (2016) Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J Mater Chem A 4:15536–15545CrossRef
95.
go back to reference Huang T, Chen Y, Lee J-M (2017) Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustain Chem Eng 5:5646–5650CrossRef Huang T, Chen Y, Lee J-M (2017) Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustain Chem Eng 5:5646–5650CrossRef
96.
go back to reference Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3:16435–16439CrossRef Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3:16435–16439CrossRef
97.
go back to reference Jayaramulu K, Masa J, Tomanec O, Peeters D, Ranc V, Schneemann A, Zboril R, Schuhmann W, Fischer RA (2017) Electrocatalysis: nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv Funct Mater 27:1700451 Jayaramulu K, Masa J, Tomanec O, Peeters D, Ranc V, Schneemann A, Zboril R, Schuhmann W, Fischer RA (2017) Electrocatalysis: nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv Funct Mater 27:1700451
98.
go back to reference Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390CrossRef Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390CrossRef
99.
go back to reference Ai L, Tian T, Jiang J (2017) Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain Chem Eng 5:4771–4777CrossRef Ai L, Tian T, Jiang J (2017) Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain Chem Eng 5:4771–4777CrossRef
100.
go back to reference Liu S, Zhang H, Zhao Q, Zhang X, Liu R, Ge X, Wang G, Zhao H, Cai W (2016) Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 106:74–83CrossRef Liu S, Zhang H, Zhao Q, Zhang X, Liu R, Ge X, Wang G, Zhao H, Cai W (2016) Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 106:74–83CrossRef
101.
go back to reference Chaikittisilp W, Torad NL, Li C, Imura M, Suzuki N, Ishihara S, Ariga K, Yamauchi Y (2014) Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem A Eur J 20:4217–4221CrossRef Chaikittisilp W, Torad NL, Li C, Imura M, Suzuki N, Ishihara S, Ariga K, Yamauchi Y (2014) Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem A Eur J 20:4217–4221CrossRef
102.
go back to reference Xia W, Zhu J, Guo W, An L, Xia D, Zou R (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2:11606–11613CrossRef Xia W, Zhu J, Guo W, An L, Xia D, Zou R (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2:11606–11613CrossRef
103.
go back to reference You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y (2015) Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal 5:7068–7076CrossRef You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y (2015) Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal 5:7068–7076CrossRef
104.
go back to reference Shang L, Yu H, Huang X, Bian T, Shi R, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2016) Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv Mater 28:1668–1674CrossRef Shang L, Yu H, Huang X, Bian T, Shi R, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2016) Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv Mater 28:1668–1674CrossRef
105.
go back to reference Zhu Q-L, Xia W, Akita T, Zou R, Xu Q (2016) Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv Mater 28:6391–6398CrossRef Zhu Q-L, Xia W, Akita T, Zou R, Xu Q (2016) Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv Mater 28:6391–6398CrossRef
106.
go back to reference Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong W-C, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618CrossRef Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong W-C, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618CrossRef
107.
go back to reference He P, Yu X-Y, Lou XW (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56:3897–3900CrossRef He P, Yu X-Y, Lou XW (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56:3897–3900CrossRef
108.
go back to reference Han L, Yu X-Y, Lou XW (2016) Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv Mater 28:4601–4605CrossRef Han L, Yu X-Y, Lou XW (2016) Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv Mater 28:4601–4605CrossRef
109.
go back to reference Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y (2018) Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 1:781–786CrossRef Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y (2018) Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 1:781–786CrossRef
110.
go back to reference Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Ju H, Dong J, Zheng L, Yan W, Zheng X, Li Z, Wang X, Yang J, He D, Wang Y, Deng Z, Wu Y, Li Y (2017) Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 139:9419–9422CrossRef Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Ju H, Dong J, Zheng L, Yan W, Zheng X, Li Z, Wang X, Yang J, He D, Wang Y, Deng Z, Wu Y, Li Y (2017) Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 139:9419–9422CrossRef
111.
go back to reference Yang Q, Yang C-C, Lin C-H, Jiang H-L (2019) Metal–organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed 58:3511–3515CrossRef Yang Q, Yang C-C, Lin C-H, Jiang H-L (2019) Metal–organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed 58:3511–3515CrossRef
112.
go back to reference Ma S, Goenaga GA, Call AV, Liu D-J (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem A Eur J 17:2063–2067CrossRef Ma S, Goenaga GA, Call AV, Liu D-J (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem A Eur J 17:2063–2067CrossRef
113.
go back to reference Zhu Q-L, Xia W, Zheng L-R, Zou R, Liu Z, Xu Q (2017) Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett 2:504–511CrossRef Zhu Q-L, Xia W, Zheng L-R, Zou R, Liu Z, Xu Q (2017) Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett 2:504–511CrossRef
114.
go back to reference Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 56:6937–6941CrossRef Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 56:6937–6941CrossRef
115.
go back to reference Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu Q (2019) Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed 58:1975–1979CrossRef Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu Q (2019) Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed 58:1975–1979CrossRef
116.
go back to reference Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139:17281–17284CrossRef Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139:17281–17284CrossRef
117.
go back to reference Sun C, Dong Q, Yang J, Dai Z, Lin J, Chen P, Huang W, Dong X (2016) Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9:2234–2243CrossRef Sun C, Dong Q, Yang J, Dai Z, Lin J, Chen P, Huang W, Dong X (2016) Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9:2234–2243CrossRef
118.
go back to reference Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz 2:342–348CrossRef Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz 2:342–348CrossRef
119.
go back to reference Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455CrossRef Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455CrossRef
120.
go back to reference Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8:14969CrossRef Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8:14969CrossRef
121.
go back to reference Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C-Y, Zhou W, Zhao J, Qiu J (2017) Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater 29:1700874CrossRef Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C-Y, Zhou W, Zhao J, Qiu J (2017) Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater 29:1700874CrossRef
122.
go back to reference Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J (2017) Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv Mater 29:1704117CrossRef Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J (2017) Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv Mater 29:1704117CrossRef
123.
go back to reference Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006CrossRef Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006CrossRef
124.
go back to reference Li W-J, Liu J, Sun Z-H, Liu T-F, Lü J, Gao S-Y, He C, Cao R, Luo J-H (2016) Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun 7:11830CrossRef Li W-J, Liu J, Sun Z-H, Liu T-F, Lü J, Gao S-Y, He C, Cao R, Luo J-H (2016) Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun 7:11830CrossRef
125.
go back to reference Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans DG, Duan X (2016) Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv Mater 28:2337–2344CrossRef Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans DG, Duan X (2016) Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv Mater 28:2337–2344CrossRef
Metadata
Title
Metal–Organic Frameworks for Electrocatalysis
Authors
Muhammad Usman
Qi-Long Zhu
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-27161-9_2