Skip to main content
Top

2023 | OriginalPaper | Chapter

Metal Phosphate/Phosphonates for Hydrogen Production and Storage

Authors : Rabia Sultana, Yinghui Han, Xin Zhang, Lijing Wang

Published in: Metal Phosphates and Phosphonates

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a kind of green energy, hydrogen is an effective way to solve energy shortages, environmental pollution, and climate change. At present, the cost of hydrogen energy production and storage is high. Metal phosphide is expected to be the upstream main raw material to support the hydrogen economy instead of precious metals due to its low hydrogen overpotential, adjustable electronic structure, high conductivity, and low price. This chapter reviews the R&D status of metal phosphates/phosphonates as electrocatalysts, photocatalysts, biological starters, and thermochemical stabilizers in hydrogen energy preparation and storage technology, respectively. The progress of phosphorous-based fuel cells is also summarized. Finally, the application of metal phosphate/phosphonates in the related fields of hydrogen energy development has prospected. This chapter aims to provide technical support and theoretical reference for researchers and beginners in related industries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weng, C., Ren, J., Yuan, Z.: Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. Chemsuschem 13(13), 3357–3375 (2020)PubMedCrossRef Weng, C., Ren, J., Yuan, Z.: Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. Chemsuschem 13(13), 3357–3375 (2020)PubMedCrossRef
2.
go back to reference Herbaut, M., Siaj, M., Claverie, J.P.: Nanomaterials-based water splitting: how far are we from a sustainable solution? ACS Appl. Nano Mater. 4(2), 907–910 (2021)CrossRef Herbaut, M., Siaj, M., Claverie, J.P.: Nanomaterials-based water splitting: how far are we from a sustainable solution? ACS Appl. Nano Mater. 4(2), 907–910 (2021)CrossRef
3.
go back to reference Oyama, S.T., Gott, T., Zhao, H., Lee, Y.: Transition metal phosphide hydroprocessing catalysts: a review. Catal. Today 143, 94–107 (2009)CrossRef Oyama, S.T., Gott, T., Zhao, H., Lee, Y.: Transition metal phosphide hydroprocessing catalysts: a review. Catal. Today 143, 94–107 (2009)CrossRef
4.
go back to reference Feng, Y., Xu, W., Sun, Z., Li, C., Guo, L., Li, H., Xu, J., Sun, H.: Highly integrated precursor-derived FePO4/P-doped C2D nanofilm-encapsulated Ni2P@NC matrix as an electrocatalyst for energy-saving hydrogen production. ACS Sustain. Chem. Eng. 10(26), 8605–8614 (2022)CrossRef Feng, Y., Xu, W., Sun, Z., Li, C., Guo, L., Li, H., Xu, J., Sun, H.: Highly integrated precursor-derived FePO4/P-doped C2D nanofilm-encapsulated Ni2P@NC matrix as an electrocatalyst for energy-saving hydrogen production. ACS Sustain. Chem. Eng. 10(26), 8605–8614 (2022)CrossRef
5.
go back to reference Jiang, N., Shi, S.J., Cui, Y.Y., Jiang, B.L.: The effect of calcination temperature on the hydrogen evolution reaction performance of Co/NiCoP nano-heterojunction. J. Alloys Compd. 929, 167229 (2022)CrossRef Jiang, N., Shi, S.J., Cui, Y.Y., Jiang, B.L.: The effect of calcination temperature on the hydrogen evolution reaction performance of Co/NiCoP nano-heterojunction. J. Alloys Compd. 929, 167229 (2022)CrossRef
6.
go back to reference Zhang, Q., Ru, Z.L.Z., Daiyan, R., Kumar, P., Pan, J., Lu, X., Amal, R.: Surface reconstruction enabled efficient hydrogen generation on a cobalt-iron phosphate electrocatalyst in neutral water. ACS Appl. Mater. Interfaces 13(45), 53798–53809 (2022)CrossRef Zhang, Q., Ru, Z.L.Z., Daiyan, R., Kumar, P., Pan, J., Lu, X., Amal, R.: Surface reconstruction enabled efficient hydrogen generation on a cobalt-iron phosphate electrocatalyst in neutral water. ACS Appl. Mater. Interfaces 13(45), 53798–53809 (2022)CrossRef
7.
go back to reference Clarizia, L., Russo, D., di Somma, I., Andreozzi, R., Marotta, R.: Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 10(10), 1624 (2017)CrossRef Clarizia, L., Russo, D., di Somma, I., Andreozzi, R., Marotta, R.: Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 10(10), 1624 (2017)CrossRef
8.
go back to reference Wang, J., Zhang, R., Liu, Y., Wang, Z., Wang, P., Zheng, Z., Qin, X., Zhang, X., Dai, Y., Huang, B.: Two transition metal phosphonate photocatalysts for H2 evolution and CO2 reduction. Chem. Commun. 54, 7195–7198 (2018)CrossRef Wang, J., Zhang, R., Liu, Y., Wang, Z., Wang, P., Zheng, Z., Qin, X., Zhang, X., Dai, Y., Huang, B.: Two transition metal phosphonate photocatalysts for H2 evolution and CO2 reduction. Chem. Commun. 54, 7195–7198 (2018)CrossRef
9.
go back to reference Zhang, J., Yao, W., Huang, C., Shi, P., Xu, Q.: High efficiency and stable tungsten phosphide cocatalysts for photocatalytic hydrogen production. J. Mater. Chem. A. 5, 12513–12519 (2017)CrossRef Zhang, J., Yao, W., Huang, C., Shi, P., Xu, Q.: High efficiency and stable tungsten phosphide cocatalysts for photocatalytic hydrogen production. J. Mater. Chem. A. 5, 12513–12519 (2017)CrossRef
10.
go back to reference Zhu, Y., Yin, J., Abou-hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), e1906368 (2020)PubMedCrossRef Zhu, Y., Yin, J., Abou-hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), e1906368 (2020)PubMedCrossRef
11.
go back to reference Kim, Y.M., Cho, H., Jung, G.Y., Park, J.M.: Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol. Bioeng. 108(12), 2941–2946 (2011)PubMedCrossRef Kim, Y.M., Cho, H., Jung, G.Y., Park, J.M.: Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol. Bioeng. 108(12), 2941–2946 (2011)PubMedCrossRef
12.
go back to reference Kim, E., Wu, C., Adams, M.W.W., Zhang, Y.P.: Exceptionally high rates of biological hydrogen production by biomimetic in vitro synthetic enzymatic pathways. Chemistry 22(45), 16047–16051 (2016)PubMedCrossRef Kim, E., Wu, C., Adams, M.W.W., Zhang, Y.P.: Exceptionally high rates of biological hydrogen production by biomimetic in vitro synthetic enzymatic pathways. Chemistry 22(45), 16047–16051 (2016)PubMedCrossRef
13.
go back to reference Goeller, H.E.: Engineering scoping study of the production of hydrogen and oxygen from the cerium oxide-sodium phosphate/carbonate thermochemical cycle. Technical report. United States (1984) Goeller, H.E.: Engineering scoping study of the production of hydrogen and oxygen from the cerium oxide-sodium phosphate/carbonate thermochemical cycle. Technical report. United States (1984)
14.
go back to reference Singla, S., Shetti, N.P., Basu, S., Mondal, K., Aminabhavi, T.M.: Hydrogen production technologies—membrane based separation, storage and challenges. J. Environ. Manage. 302(Part A), 113963 (2022) Singla, S., Shetti, N.P., Basu, S., Mondal, K., Aminabhavi, T.M.: Hydrogen production technologies—membrane based separation, storage and challenges. J. Environ. Manage. 302(Part A), 113963 (2022)
15.
go back to reference Yang, D., Zhang, Y., Barupal, D.K., Fan, X., Gustafson, R., Guo, R., Fiehn, O.: Metabolomics of photobiological hydrogen production induced by CCCP in Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 39(1), 150–158 (2014)CrossRef Yang, D., Zhang, Y., Barupal, D.K., Fan, X., Gustafson, R., Guo, R., Fiehn, O.: Metabolomics of photobiological hydrogen production induced by CCCP in Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 39(1), 150–158 (2014)CrossRef
16.
go back to reference Fan, X., Wang, H., Guo, R., Yang, D., Zhang, Y., Yuan, X., Qiu, Y., Yang, Z., Zhao, X.: Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production. Algal. Res. 16, 240–244 (2016)CrossRef Fan, X., Wang, H., Guo, R., Yang, D., Zhang, Y., Yuan, X., Qiu, Y., Yang, Z., Zhao, X.: Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production. Algal. Res. 16, 240–244 (2016)CrossRef
17.
go back to reference Masukawa, H., Sakurai, H., Hausinger, R.P., Inoue, K.: Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int. J. Hydrogen Energy 39(34), 19444–19451 (2014)CrossRef Masukawa, H., Sakurai, H., Hausinger, R.P., Inoue, K.: Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int. J. Hydrogen Energy 39(34), 19444–19451 (2014)CrossRef
18.
go back to reference Cai, W., Liu, W., Cui, D., Wang, A.: Hydrogen production from buffer-free anaerobic fermentation liquid of waste activated sludge using microbial electrolysis system. RSC Adv. 6, 38769–38773 (2016)CrossRef Cai, W., Liu, W., Cui, D., Wang, A.: Hydrogen production from buffer-free anaerobic fermentation liquid of waste activated sludge using microbial electrolysis system. RSC Adv. 6, 38769–38773 (2016)CrossRef
19.
go back to reference Liu, Q., Chen, W., Zhang, X., Yu, L., Zhou, J., Xu, Y., Qian, G.: Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient. Bioresource Technol. 190, 431–437 (2015)CrossRef Liu, Q., Chen, W., Zhang, X., Yu, L., Zhou, J., Xu, Y., Qian, G.: Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient. Bioresource Technol. 190, 431–437 (2015)CrossRef
20.
go back to reference Guo, S., Lu, C., Wang, K., Wang, J., Zhang, Z., Jing, Y., Zhang, Q.: Enhancement of pH values stability and photo-fermentation biohydrogen production by phosphate buffer. Bioengineered 11, 1736239 (2020)CrossRef Guo, S., Lu, C., Wang, K., Wang, J., Zhang, Z., Jing, Y., Zhang, Q.: Enhancement of pH values stability and photo-fermentation biohydrogen production by phosphate buffer. Bioengineered 11, 1736239 (2020)CrossRef
21.
go back to reference Chen, L., Wang, M., Han, K., Zhang, P., Gloaguen, F., Sun, L.: A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy Environ. Sci. 7(1), 329–334 (2014)CrossRef Chen, L., Wang, M., Han, K., Zhang, P., Gloaguen, F., Sun, L.: A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy Environ. Sci. 7(1), 329–334 (2014)CrossRef
22.
go back to reference Vishwakarma, A.K., Tripathi, P., Srivastava, A., Sinha, A.S.K., Srivastava, O.N.: Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 42(36), 22677–22686 (2017)CrossRef Vishwakarma, A.K., Tripathi, P., Srivastava, A., Sinha, A.S.K., Srivastava, O.N.: Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 42(36), 22677–22686 (2017)CrossRef
23.
go back to reference Alarawi, A., Ramalingam, V., Fu, H.-C., Varadhan, P., Yang, R., He, J.-H.: Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction. Opt. Express 27(8), A352–A363 (2019)PubMedCrossRef Alarawi, A., Ramalingam, V., Fu, H.-C., Varadhan, P., Yang, R., He, J.-H.: Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction. Opt. Express 27(8), A352–A363 (2019)PubMedCrossRef
24.
go back to reference Choi, S., Hwang, J., Lee, T.H., Kim, H., Hong, S., Kim, C., Choi, M.J., Park, H.K., Bhat, S.S.M., Suh, J.M., Lee, J., Choi, K.S., Hong, S., Shin, J.C., Jang, H.W.: Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2 passivated InAs Nanowire/p-Si heterostructure photocathode. Chem. Eng. J. 395(15), 123688 (2020) Choi, S., Hwang, J., Lee, T.H., Kim, H., Hong, S., Kim, C., Choi, M.J., Park, H.K., Bhat, S.S.M., Suh, J.M., Lee, J., Choi, K.S., Hong, S., Shin, J.C., Jang, H.W.: Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2 passivated InAs Nanowire/p-Si heterostructure photocathode. Chem. Eng. J. 395(15), 123688 (2020)
25.
go back to reference Kageshima, Y., Kawanishi, T., Saeki, D., Teshima, K., Domen, K., Nishikiori, H.: Boosted hydrogen-evolution kinetics over particulate lanthanum and rhodium-doped strontium titanate photocatalysts modified with phosphonate groups. Angew. 3654–3660 (2020) Kageshima, Y., Kawanishi, T., Saeki, D., Teshima, K., Domen, K., Nishikiori, H.: Boosted hydrogen-evolution kinetics over particulate lanthanum and rhodium-doped strontium titanate photocatalysts modified with phosphonate groups. Angew. 3654–3660 (2020)
26.
go back to reference Liu, H., Xu, C., Li, D., Jiang, H.L.: Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. 57(19), v5379-5383 (2018)CrossRef Liu, H., Xu, C., Li, D., Jiang, H.L.: Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. 57(19), v5379-5383 (2018)CrossRef
27.
go back to reference Wei, R., Huang, Z., Gu, G., Wang, Z., Zeng, L., Chen, Y., Liu, Z.: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B 231, 101–107 (2018)CrossRef Wei, R., Huang, Z., Gu, G., Wang, Z., Zeng, L., Chen, Y., Liu, Z.: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B 231, 101–107 (2018)CrossRef
28.
go back to reference Wang, F., Ng, W.K.H., Yu, J.C., Zhu, H., Li, C., Zhang, L., Liu, Z., Li, Q.: Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl. Catal. B 111–112, 409–414 (2012)CrossRef Wang, F., Ng, W.K.H., Yu, J.C., Zhu, H., Li, C., Zhang, L., Liu, Z., Li, Q.: Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl. Catal. B 111–112, 409–414 (2012)CrossRef
29.
go back to reference Wang, F., Li, C., Li, Y., Yu, J.C.: Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light irradiation. Appl. Catal. B 119–120, 267–272 (2012)CrossRef Wang, F., Li, C., Li, Y., Yu, J.C.: Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light irradiation. Appl. Catal. B 119–120, 267–272 (2012)CrossRef
30.
go back to reference Shen, Z., Sun, S., Wang, W., Liu, J., Liu, Z., Yu, J.C.: A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 3, 3285–3288 (2015)CrossRef Shen, Z., Sun, S., Wang, W., Liu, J., Liu, Z., Yu, J.C.: A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 3, 3285–3288 (2015)CrossRef
31.
go back to reference Yuan, Y.-P., Cao, S.-W., Liao, Y.-S., Yin, L.-S., Xue, C.: Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B 140–141, 164–168 (2013)CrossRef Yuan, Y.-P., Cao, S.-W., Liao, Y.-S., Yin, L.-S., Xue, C.: Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B 140–141, 164–168 (2013)CrossRef
32.
go back to reference Guo, S.-Y., Han, S.: Constructing a novel hierarchical 3D flower-like nano/micro titanium phosphate with efficient hydrogen evolution from water splitting. J. Power Sources 267, 9–13 (2014)CrossRef Guo, S.-Y., Han, S.: Constructing a novel hierarchical 3D flower-like nano/micro titanium phosphate with efficient hydrogen evolution from water splitting. J. Power Sources 267, 9–13 (2014)CrossRef
33.
go back to reference Serra, M., Baldovi, H.G., Alvaro, M., Garcia, H.: Doped framework iron hydroxyl phosphate as photocatalyst for hydrogen production from water/methanol mixtures. Eur. J. Inorg. Chem. 2015, 4237–4243 (2015)CrossRef Serra, M., Baldovi, H.G., Alvaro, M., Garcia, H.: Doped framework iron hydroxyl phosphate as photocatalyst for hydrogen production from water/methanol mixtures. Eur. J. Inorg. Chem. 2015, 4237–4243 (2015)CrossRef
34.
go back to reference Pan, B., Wang, Y., Liang, Y., Luo, S., Su, W., Wang, X.: Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 39, 13527–13533 (2014)CrossRef Pan, B., Wang, Y., Liang, Y., Luo, S., Su, W., Wang, X.: Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 39, 13527–13533 (2014)CrossRef
35.
go back to reference Martin, D.J., Liu, G.G., Moniz, S.J.A., Bi, Y.P., Beale, A.M., Ye, J.H., Tang, J.W.: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44, 7808–7828 (2015)PubMedCrossRef Martin, D.J., Liu, G.G., Moniz, S.J.A., Bi, Y.P., Beale, A.M., Ye, J.H., Tang, J.W.: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44, 7808–7828 (2015)PubMedCrossRef
36.
go back to reference Yi, Z.G., Ye, J.H., Kikugawa, N., Kako, T., Ouyang, S.X., Stuart-Williams, H., Yang, H., Cao, J.Y., Luo, W.J., Li, Z.S., Liu, Y., Withers, R.L.: Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. Nat. Mater. 9, 559–564 (2010)PubMedCrossRef Yi, Z.G., Ye, J.H., Kikugawa, N., Kako, T., Ouyang, S.X., Stuart-Williams, H., Yang, H., Cao, J.Y., Luo, W.J., Li, Z.S., Liu, Y., Withers, R.L.: Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. Nat. Mater. 9, 559–564 (2010)PubMedCrossRef
37.
go back to reference Tian, J., Cheng, N., Liu, Q., Xing, W., Sun, X.: Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem Int. Ed. 54, 5493–5497 (2015)CrossRef Tian, J., Cheng, N., Liu, Q., Xing, W., Sun, X.: Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem Int. Ed. 54, 5493–5497 (2015)CrossRef
38.
go back to reference Wu, W., Yue, X., Wu, X.-Y., Lu, C.-Z.: Efficient visible-light-induced hydrogen evolution from water splitting using a nanocrystalline nickel phosphide catalyst. RSC Adv. 6, 24361–24365 (2016)CrossRef Wu, W., Yue, X., Wu, X.-Y., Lu, C.-Z.: Efficient visible-light-induced hydrogen evolution from water splitting using a nanocrystalline nickel phosphide catalyst. RSC Adv. 6, 24361–24365 (2016)CrossRef
39.
go back to reference Pi, M., Wu, T., Zhang, D., Chen, S., Wang, S.: Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity. RSC Adv. 6, 15724–15730 (2016)CrossRef Pi, M., Wu, T., Zhang, D., Chen, S., Wang, S.: Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity. RSC Adv. 6, 15724–15730 (2016)CrossRef
40.
go back to reference Wajda, T., Gabriel, K.: Thermolysis reactor scale-up for pilot scale Cu–Cl hybrid hydrogen production. Int. J. Hydrogen Energy 44(20), 9779–9790 (2019)CrossRef Wajda, T., Gabriel, K.: Thermolysis reactor scale-up for pilot scale Cu–Cl hybrid hydrogen production. Int. J. Hydrogen Energy 44(20), 9779–9790 (2019)CrossRef
41.
go back to reference Pobinson, P.R., Bamberger, C.E.: Thermochemical water-splitting cycles based upon reactions of cerium- and alkaline earth phosphates. In: Conference: 2. Miami International Conference on Alternative Energy Sources, Miami Beach, FL, USA, 10 Dec 1979 (1979) Pobinson, P.R., Bamberger, C.E.: Thermochemical water-splitting cycles based upon reactions of cerium- and alkaline earth phosphates. In: Conference: 2. Miami International Conference on Alternative Energy Sources, Miami Beach, FL, USA, 10 Dec 1979 (1979)
42.
go back to reference Tawarayama, H., Utsuno, F., Inoue, H., Fujitsu, S., Kawazoe, H.: Low temperature thermochemical water splitting using tungsten phosphate glass/Pd laminated membrane. J. Power Sources 161(1), 129–132 (2006)CrossRef Tawarayama, H., Utsuno, F., Inoue, H., Fujitsu, S., Kawazoe, H.: Low temperature thermochemical water splitting using tungsten phosphate glass/Pd laminated membrane. J. Power Sources 161(1), 129–132 (2006)CrossRef
43.
go back to reference Tang, H., Geng, K., Hu, Y., Li, N.: Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. J. Membrance Sci. 605(15), 118107 (2020)CrossRef Tang, H., Geng, K., Hu, Y., Li, N.: Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. J. Membrance Sci. 605(15), 118107 (2020)CrossRef
44.
go back to reference Lafitte, B., Jannasch, P.: Chapter Three—On the prospects for phosphonated polymers as proton-exchange fuel cell membranes. Advanced in Fuel Cell. 1, 119–185 (2007)CrossRef Lafitte, B., Jannasch, P.: Chapter Three—On the prospects for phosphonated polymers as proton-exchange fuel cell membranes. Advanced in Fuel Cell. 1, 119–185 (2007)CrossRef
45.
go back to reference Sahin, A., Ar, I.: Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes. J. Power Sources 288(15), 426–433 (2015)CrossRef Sahin, A., Ar, I.: Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes. J. Power Sources 288(15), 426–433 (2015)CrossRef
46.
go back to reference Segawa, K., Funamoto, T., Ando, J., Yamaguchi, C., Kaneko, K., Takeoka, Y., Rikukawa, M.: Molecular design of layered zirconium phosphonates for fuel cell applications. Stud. Surface Sci. Catal. 154(Part A), 1096–1102 (2004) Segawa, K., Funamoto, T., Ando, J., Yamaguchi, C., Kaneko, K., Takeoka, Y., Rikukawa, M.: Molecular design of layered zirconium phosphonates for fuel cell applications. Stud. Surface Sci. Catal. 154(Part A), 1096–1102 (2004)
47.
go back to reference Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., Yamauchi, Y.: Phosphorus-based mesoporous materials for energy storage and conversion. Joule 2, 2289–2306 (2018)CrossRef Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., Yamauchi, Y.: Phosphorus-based mesoporous materials for energy storage and conversion. Joule 2, 2289–2306 (2018)CrossRef
48.
go back to reference Zhao, H., Yuan, Z.: Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. Chemsuschem 14(1), 130–149 (2021)PubMedCrossRef Zhao, H., Yuan, Z.: Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. Chemsuschem 14(1), 130–149 (2021)PubMedCrossRef
49.
go back to reference Dong, J., Ban, G., Zhao, Q., Liu, L., Liu, J.: Hydrogen storage in several metal-phosphate molecular sieves. Environ. Energy Eng. 54(1), 3017–3025 (2008) Dong, J., Ban, G., Zhao, Q., Liu, L., Liu, J.: Hydrogen storage in several metal-phosphate molecular sieves. Environ. Energy Eng. 54(1), 3017–3025 (2008)
50.
go back to reference Rivard, E., Trudeau, M., Zaghib K.: Hydrogen storage for mobility: a review. Materials 12(12), 1973 (2019) (Open Access) Rivard, E., Trudeau, M., Zaghib K.: Hydrogen storage for mobility: a review. Materials 12(12), 1973 (2019) (Open Access)
51.
go back to reference Chen, X., Peng, Y., Han X., Liu, Y., Lin, X., Cui, Y.: Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat. Commun. 8, 2171 (2017) (Open Access) Chen, X., Peng, Y., Han X., Liu, Y., Lin, X., Cui, Y.: Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat. Commun. 8, 2171 (2017) (Open Access)
Metadata
Title
Metal Phosphate/Phosphonates for Hydrogen Production and Storage
Authors
Rabia Sultana
Yinghui Han
Xin Zhang
Lijing Wang
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27062-8_8