Skip to main content
Top

2023 | OriginalPaper | Chapter

Metal Phosphates/Phosphonates for Biomedical Applications

Authors : Aditya Dev Rajora, Trishna Bal, Snigdha Singh, Shreya Sharma, Itishree Jogamaya Das, Fahad Uddin

Published in: Metal Phosphates and Phosphonates

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The human body is composed of many vital elements and phosphorus is one such element that forms the basic ingredient of our biological constitution. Recently, researchers are more lenient on fabricating and applying materials for biomedical applications which pose the least threat to the human body with high mechanical strength and degradability opportunities. This provides an interesting platform and opens many avenues for the utilization of versatile metal conjugates of phosphorus in the form of phosphates/phosphonates as nanodevices or nanostructured moieties for varied biomedical applications. In this regard, metal phosphates/phosphonates have come out with such ideal properties making our biological functions better and comfortable with the least adverse reactions. Ideal metal phosphates/phosphonates are inert and degradable materials without any probability of releasing toxic contents and are generally employed for different applications namely in the field of dentistry as composite material for dental caries, cardiovascular stent fabrication, orthopedic applications, etc. As such metal phosphates are purely inorganic materials attached to phosphoric acid units and metal phosphonates are nanostructures comprising organophosphonate ligands attached to the organic–inorganic hybrid structures. These hybrid materials have a well-defined structural build triggering their usage as body implants and other in vivo applications. Thus, the current chapter highlights all the major strategies involving the fabrication of these hybrid structures with their latest biomedical applications involving biocompatibility studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hermawan, H., Ramdan, D., Djuansjah, J.R.: Metals for biomedical applications. In: Fazed-Rezai, R. (ed) Biomedical Engineering-From Theory to Applications, vol. 1, pp. 411–430 (2011) Hermawan, H., Ramdan, D., Djuansjah, J.R.: Metals for biomedical applications. In: Fazed-Rezai, R. (ed) Biomedical Engineering-From Theory to Applications, vol. 1, pp. 411–430 (2011)
2.
go back to reference Clearfield, A.: The early history and growth of metal phosphonate chemistry. In: Clearfield, A., Demadis, K.C. (eds) Metal phosphonate chemistry: from synthesis to applications, pp. 1–44. RSC Adv (2012) Clearfield, A.: The early history and growth of metal phosphonate chemistry. In: Clearfield, A., Demadis, K.C. (eds) Metal phosphonate chemistry: from synthesis to applications, pp. 1–44. RSC Adv (2012)
3.
go back to reference Al, S.M., Sabouni, R., Husseini, G.A.: Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: a review. Nanomaterials 12(2), 277 (2022)CrossRef Al, S.M., Sabouni, R., Husseini, G.A.: Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: a review. Nanomaterials 12(2), 277 (2022)CrossRef
4.
go back to reference Weng, G.G., Zheng, L.M.: Chiral metal phosphonates: assembly, structures and functions. Sci. China Chem. 63, 619–636 (2020)CrossRef Weng, G.G., Zheng, L.M.: Chiral metal phosphonates: assembly, structures and functions. Sci. China Chem. 63, 619–636 (2020)CrossRef
5.
go back to reference Zhou, H., Yang, M., Hou, S., Deng, L.: Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Mater. Sci. Eng. C 71, 439–445 (2017)CrossRef Zhou, H., Yang, M., Hou, S., Deng, L.: Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Mater. Sci. Eng. C 71, 439–445 (2017)CrossRef
6.
7.
go back to reference Friedman, C.D., Costantino, P.D., Takagi, S., Chow, L.C.: Bonesource(TM) hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 43, 428–432 (1998)PubMedCrossRef Friedman, C.D., Costantino, P.D., Takagi, S., Chow, L.C.: Bonesource(TM) hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 43, 428–432 (1998)PubMedCrossRef
8.
go back to reference Tang, Y., Ren, Y., Shi, X.: Bifunctional mesoporous zirconium phosphonates for delivery of nucleic acids. Inorg. Chem. 52, 1388–1397 (2013)PubMedCrossRef Tang, Y., Ren, Y., Shi, X.: Bifunctional mesoporous zirconium phosphonates for delivery of nucleic acids. Inorg. Chem. 52, 1388–1397 (2013)PubMedCrossRef
9.
go back to reference Gorgieva, S., Vivod, V., Maver, U., Gradišnik, L., Dolenšek, J., Kokol, V.: Internalization of (bis) phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose 24, 4235–4252 (2017)CrossRef Gorgieva, S., Vivod, V., Maver, U., Gradišnik, L., Dolenšek, J., Kokol, V.: Internalization of (bis) phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose 24, 4235–4252 (2017)CrossRef
10.
go back to reference Huang, X., Wu, S., Ke, X., Li, X., Du, X.: Article phosphonated pillar [5] arene-valved mesoporous silica drug delivery systems. ACS Appl. Mater. Interfaces 9, 19638–19645 (2017)PubMedCrossRef Huang, X., Wu, S., Ke, X., Li, X., Du, X.: Article phosphonated pillar [5] arene-valved mesoporous silica drug delivery systems. ACS Appl. Mater. Interfaces 9, 19638–19645 (2017)PubMedCrossRef
11.
go back to reference Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: PH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chemie. – Int. Ed. 50, 8853–8857 (2011)CrossRef Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: PH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chemie. – Int. Ed. 50, 8853–8857 (2011)CrossRef
12.
go back to reference Popat, A., Liu, J., Lu, G.Q., Qiao, S.Z.: A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem. 22, 11173–11178 (2012)CrossRef Popat, A., Liu, J., Lu, G.Q., Qiao, S.Z.: A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem. 22, 11173–11178 (2012)CrossRef
13.
go back to reference Zhang, M., Zhang, L., Chen, Y., Li, L., Su, Z., Wang, C.: Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017)PubMedPubMedCentralCrossRef Zhang, M., Zhang, L., Chen, Y., Li, L., Su, Z., Wang, C.: Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017)PubMedPubMedCentralCrossRef
14.
go back to reference Lin, R., Ding, Y.: A review on the synthesis and applications of mesostructured transition metal phosphates. Materials (Basel) 6, 217–243 (2013)PubMedCrossRef Lin, R., Ding, Y.: A review on the synthesis and applications of mesostructured transition metal phosphates. Materials (Basel) 6, 217–243 (2013)PubMedCrossRef
15.
go back to reference Qian, L., Xia, Y., Zhang, W., Huang, H., Gan, Y., Zeng, H., Tao, X.: Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials. Microporous Mesoporous Mater. 152, 128–133 (2012)CrossRef Qian, L., Xia, Y., Zhang, W., Huang, H., Gan, Y., Zeng, H., Tao, X.: Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials. Microporous Mesoporous Mater. 152, 128–133 (2012)CrossRef
16.
go back to reference Ma, T.Y., Zhang, X.J., Yuan, Z.Y.: Hierarchically meso-/macroporous titanium tetraphosphonate materials: synthesis, photocatalytic activity and heavy metal ion adsorption. Microporous Mesoporous Mater. 123, 234–242 (2009)CrossRef Ma, T.Y., Zhang, X.J., Yuan, Z.Y.: Hierarchically meso-/macroporous titanium tetraphosphonate materials: synthesis, photocatalytic activity and heavy metal ion adsorption. Microporous Mesoporous Mater. 123, 234–242 (2009)CrossRef
17.
go back to reference Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., Wang, H., Liu, Y.: Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv. Sci. 9, 1–22 (2022)CrossRef Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., Wang, H., Liu, Y.: Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv. Sci. 9, 1–22 (2022)CrossRef
18.
go back to reference Scudiero, D.A., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D., Boyd, M.R.: Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833 (1988)PubMed Scudiero, D.A., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D., Boyd, M.R.: Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833 (1988)PubMed
19.
go back to reference Tavares, D.D.S., Castro, L.D.O., Soares, G.D.D.A., Alves, G.G., Granjeiro, J.M.: Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral. Sci. 21, 37–42 (2013)PubMedPubMedCentralCrossRef Tavares, D.D.S., Castro, L.D.O., Soares, G.D.D.A., Alves, G.G., Granjeiro, J.M.: Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral. Sci. 21, 37–42 (2013)PubMedPubMedCentralCrossRef
20.
go back to reference Berridge, M.V., Tan, A.S.: Characterization of MTT Berridge 1992.pdf. Arch. Biochem. Biophys. Biochem. Biophys. 2, 474–482 (1993)CrossRef Berridge, M.V., Tan, A.S.: Characterization of MTT Berridge 1992.pdf. Arch. Biochem. Biophys. Biochem. Biophys. 2, 474–482 (1993)CrossRef
21.
go back to reference Su, Y., Wang, K., Gao, J., Yang, Y., Qin, Y.X., Zheng, Y., Zhu, D.: Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater. 98, 174–185 (2019)PubMedPubMedCentralCrossRef Su, Y., Wang, K., Gao, J., Yang, Y., Qin, Y.X., Zheng, Y., Zhu, D.: Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater. 98, 174–185 (2019)PubMedPubMedCentralCrossRef
22.
go back to reference Beigoli, S., Hekmat, A., Farzanegan, F., Darroudi, M.: Green synthesis of amorphous calcium phosphate nanopowders using Aloe Vera plant extract and assessment of their cytotoxicity and antimicrobial activities. J. Sol-Gel Sci. Technol. 98, 508–516 (2021)CrossRef Beigoli, S., Hekmat, A., Farzanegan, F., Darroudi, M.: Green synthesis of amorphous calcium phosphate nanopowders using Aloe Vera plant extract and assessment of their cytotoxicity and antimicrobial activities. J. Sol-Gel Sci. Technol. 98, 508–516 (2021)CrossRef
23.
go back to reference Ní Shúilleabháin, S., Mothersill, C., Sheehan, D., O’Brien, N.M., O’Halloran, J., Van Pelt, F.N.A.M., Davoren, M.: In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol. Vitr. 18, 365–376 (2004) Ní Shúilleabháin, S., Mothersill, C., Sheehan, D., O’Brien, N.M., O’Halloran, J., Van Pelt, F.N.A.M., Davoren, M.: In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol. Vitr. 18, 365–376 (2004)
24.
go back to reference Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31, 5343–5362 (2019)CrossRef Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31, 5343–5362 (2019)CrossRef
25.
go back to reference Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., et al.: Metals for bone implants: safety, design, and efficacy. Biomanuf. Rev. 1, 1–16 (2016) Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., et al.: Metals for bone implants: safety, design, and efficacy. Biomanuf. Rev. 1, 1–16 (2016)
26.
27.
go back to reference Dubey, N., Ferreira, J.A., Malda, J., Bhaduri, S.B., Bottino, M.C.: Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of Craniomaxillofacial bone tissue. ACS Appl. Mater. Interfaces 12(21), 23752–23763 (2020)PubMedPubMedCentralCrossRef Dubey, N., Ferreira, J.A., Malda, J., Bhaduri, S.B., Bottino, M.C.: Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of Craniomaxillofacial bone tissue. ACS Appl. Mater. Interfaces 12(21), 23752–23763 (2020)PubMedPubMedCentralCrossRef
28.
go back to reference Zhao, Y., Yu, S., Wu, X., Dai, H., Liu, W., Tu, R., Goto, T.: Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Mater. Des. 200, 109466 (2021)CrossRef Zhao, Y., Yu, S., Wu, X., Dai, H., Liu, W., Tu, R., Goto, T.: Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Mater. Des. 200, 109466 (2021)CrossRef
29.
go back to reference Golafshan, N., Vorndran, E., Zaharievski, S., Brommer, H., Kadumudi, F.B., Dolatshahi-Pirouz, A., Gbureck, U., Van Weeren, R., Castilho, M., Malda, J.: Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials 261, 120302 (2020)PubMedPubMedCentralCrossRef Golafshan, N., Vorndran, E., Zaharievski, S., Brommer, H., Kadumudi, F.B., Dolatshahi-Pirouz, A., Gbureck, U., Van Weeren, R., Castilho, M., Malda, J.: Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials 261, 120302 (2020)PubMedPubMedCentralCrossRef
30.
go back to reference Cao, X., Ge, W., Wang, Y., Ma, M., Wang, Y., Zhang, B., Wang, J., Guo, Y.: Rapid fabrication of MgNH4PO4·H2O/SrHPO4 porous composite scaffolds with improved radiopacity via 3D printing process. Biomedicines 9, 1138 (2021)PubMedPubMedCentralCrossRef Cao, X., Ge, W., Wang, Y., Ma, M., Wang, Y., Zhang, B., Wang, J., Guo, Y.: Rapid fabrication of MgNH4PO4·H2O/SrHPO4 porous composite scaffolds with improved radiopacity via 3D printing process. Biomedicines 9, 1138 (2021)PubMedPubMedCentralCrossRef
31.
go back to reference Pahlevanzadeh, F., Emadi, R., Setayeshmehr, M., Kharaziha, M., Poursamar, S.A.: Antibacterial amorphous magnesium phosphate/graphene oxide for accelerating bone regeneration. Biomater. Adv 212856 (2022) Pahlevanzadeh, F., Emadi, R., Setayeshmehr, M., Kharaziha, M., Poursamar, S.A.: Antibacterial amorphous magnesium phosphate/graphene oxide for accelerating bone regeneration. Biomater. Adv 212856 (2022)
32.
go back to reference Xu, H.H.K., Wang, P., Wang, L., et al.: Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 1–19 (2017)CrossRef Xu, H.H.K., Wang, P., Wang, L., et al.: Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 1–19 (2017)CrossRef
33.
go back to reference Gellynck, K., Abou Neel, E.A., Li, H.Y., Mardas, N., Donos, N., Buxton, P., Young, A.M.: Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomater. 7, 2672–2677 (2011) Gellynck, K., Abou Neel, E.A., Li, H.Y., Mardas, N., Donos, N., Buxton, P., Young, A.M.: Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomater. 7, 2672–2677 (2011)
34.
go back to reference Foroutan, F., McGuire, J., Gupta, P., Nikolaou, A., Kyffin, B.A., Kelly, N.L., Hanna, J.V., Gutierrez-Merino, J., Knowles, J.C., Baek, S.Y., Velliou, E.: Antibacterial copper-doped calcium phosphate glasses for bone tissue regeneration. ACS Biomater. Sci. Eng 5, 6054–6062 (2019)PubMedCrossRef Foroutan, F., McGuire, J., Gupta, P., Nikolaou, A., Kyffin, B.A., Kelly, N.L., Hanna, J.V., Gutierrez-Merino, J., Knowles, J.C., Baek, S.Y., Velliou, E.: Antibacterial copper-doped calcium phosphate glasses for bone tissue regeneration. ACS Biomater. Sci. Eng 5, 6054–6062 (2019)PubMedCrossRef
35.
go back to reference Kalita, H., Pal, P., Dhara, S., Pathak, A.: Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application. Mater. Sci. Eng. C 71, 363–371 (2017)CrossRef Kalita, H., Pal, P., Dhara, S., Pathak, A.: Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application. Mater. Sci. Eng. C 71, 363–371 (2017)CrossRef
36.
go back to reference Amghouz, Z., García, J.R., Adawy, A.: A review on the synthesis and current and prospective applications of zirconium and titanium phosphates. Eng 3, 161–174 (2022)CrossRef Amghouz, Z., García, J.R., Adawy, A.: A review on the synthesis and current and prospective applications of zirconium and titanium phosphates. Eng 3, 161–174 (2022)CrossRef
37.
go back to reference Mestres, G., Aguilera, F.S., Manzanares, N., Sauro, S., Osorio, R., Toledano, M., Ginebra, M.P.: Magnesium phosphate cements for endodontic applications with improved long-term sealing ability. Int. Endod. J. 47, 127–139 (2014)PubMedCrossRef Mestres, G., Aguilera, F.S., Manzanares, N., Sauro, S., Osorio, R., Toledano, M., Ginebra, M.P.: Magnesium phosphate cements for endodontic applications with improved long-term sealing ability. Int. Endod. J. 47, 127–139 (2014)PubMedCrossRef
38.
go back to reference Pardun, K., Treccani, L., Volkmann, E., et al.: Characterization of wet powder-sprayed zirconia/calcium phosphate coating for dental implants. Clin. Implant. Dent. Relat. Res. 17, 186–198 (2015)PubMedCrossRef Pardun, K., Treccani, L., Volkmann, E., et al.: Characterization of wet powder-sprayed zirconia/calcium phosphate coating for dental implants. Clin. Implant. Dent. Relat. Res. 17, 186–198 (2015)PubMedCrossRef
39.
go back to reference Islam, M.T., Felfel, R.M., Abou Neel, E.A., Grant, D.M., Ahmed, I., Hossain, K.M.Z.: Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: a review. J. Tissue Eng. 8, 2041731417719170 (2017) Islam, M.T., Felfel, R.M., Abou Neel, E.A., Grant, D.M., Ahmed, I., Hossain, K.M.Z.: Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: a review. J. Tissue Eng. 8, 2041731417719170 (2017)
40.
go back to reference Canillas, M., Pena, P., De Aza, A.H., Rodríguez, M.A.: Calcium phosphates for biomedical applications. Bol la Soc Esp Ceram y Vidr 56, 91–112 (2017)CrossRef Canillas, M., Pena, P., De Aza, A.H., Rodríguez, M.A.: Calcium phosphates for biomedical applications. Bol la Soc Esp Ceram y Vidr 56, 91–112 (2017)CrossRef
41.
go back to reference Shi, X., Li, J., Tang, Y., Yang, Q.: PH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem. 20, 6495–6504 (2010)CrossRef Shi, X., Li, J., Tang, Y., Yang, Q.: PH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem. 20, 6495–6504 (2010)CrossRef
42.
go back to reference Díaz, A., Saxena, V., González, J., David, A., Casañas, B., Carpenter, C., Batteas, J.D., Colón, J.L., Clearfield, A., Hussain, M.D.: Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 48, 1754–1756 (2012)CrossRef Díaz, A., Saxena, V., González, J., David, A., Casañas, B., Carpenter, C., Batteas, J.D., Colón, J.L., Clearfield, A., Hussain, M.D.: Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 48, 1754–1756 (2012)CrossRef
43.
go back to reference Yuan, X., Zhu, B., Ma, X., Tong, G., Su, Y., Zhu, X.: Low temperature and template-free synthesis of hollow hydroxy zinc phosphate nanospheres and their application in drug delivery. Langmuir 29, 12275–12283 (2013)PubMedCrossRef Yuan, X., Zhu, B., Ma, X., Tong, G., Su, Y., Zhu, X.: Low temperature and template-free synthesis of hollow hydroxy zinc phosphate nanospheres and their application in drug delivery. Langmuir 29, 12275–12283 (2013)PubMedCrossRef
44.
go back to reference Wang, Z., Li, G., Gao, Y., et al.: Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chem. Eng. J. 404, 125574 (2021)CrossRef Wang, Z., Li, G., Gao, Y., et al.: Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chem. Eng. J. 404, 125574 (2021)CrossRef
45.
go back to reference Cheng, F.F., He, T.T., Miao, H.T., Shi, J.J., Jiang, L.P., Zhu, J.J.: Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces 7, 2979–2985 (2015)PubMedCrossRef Cheng, F.F., He, T.T., Miao, H.T., Shi, J.J., Jiang, L.P., Zhu, J.J.: Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces 7, 2979–2985 (2015)PubMedCrossRef
46.
go back to reference Sriram, V., Lee, J.Y.: Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf. B: Biointerfaces 208 (2021) Sriram, V., Lee, J.Y.: Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf. B: Biointerfaces 208 (2021)
47.
go back to reference Cao, P., Han, F.Y., Grøndahl, L., Xu, Z.P., Li, L.: Enhanced oral vaccine efficacy of polysaccharide-coated calcium phosphate nanoparticles. ACS Omega 5, 18185–18197 (2020)PubMedPubMedCentralCrossRef Cao, P., Han, F.Y., Grøndahl, L., Xu, Z.P., Li, L.: Enhanced oral vaccine efficacy of polysaccharide-coated calcium phosphate nanoparticles. ACS Omega 5, 18185–18197 (2020)PubMedPubMedCentralCrossRef
48.
go back to reference Khalifehzadeh, R., Arami, H.: DNA-templated strontium-doped calcium phosphate nanoparticles for gene delivery in bone cells. ACS Biomater. Sci. Eng. 5(7), 3201–3211 (2019) Khalifehzadeh, R., Arami, H.: DNA-templated strontium-doped calcium phosphate nanoparticles for gene delivery in bone cells. ACS Biomater. Sci. Eng. 5(7), 3201–3211 (2019)
49.
go back to reference War, J.A., Chisti, H.T.N.: Potato starch-sodium alginate-Zr (IV) phosphate bio-nanocomposite ion exchanger: synthesis, characterization and environmental application. Curr. Org. Chem. 18, 456–465 (2022) War, J.A., Chisti, H.T.N.: Potato starch-sodium alginate-Zr (IV) phosphate bio-nanocomposite ion exchanger: synthesis, characterization and environmental application. Curr. Org. Chem. 18, 456–465 (2022)
50.
go back to reference Majhi, K.C., Yadav, M.: Neodymium oxide doped neodymium phosphate as efficient electrocatalyst towards hydrogen evolution reaction in acidic medium. J. Environ. Chem. Eng. 10, 107416 (2022)CrossRef Majhi, K.C., Yadav, M.: Neodymium oxide doped neodymium phosphate as efficient electrocatalyst towards hydrogen evolution reaction in acidic medium. J. Environ. Chem. Eng. 10, 107416 (2022)CrossRef
Metadata
Title
Metal Phosphates/Phosphonates for Biomedical Applications
Authors
Aditya Dev Rajora
Trishna Bal
Snigdha Singh
Shreya Sharma
Itishree Jogamaya Das
Fahad Uddin
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27062-8_20