Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 5/2018

26-09-2017 | Original Article

Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing

Published in: Medical & Biological Engineering & Computing | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bailón R, Garatachea N, de la Iglesia I, Casajús JA, Laguna P (2013) Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing. IEEE Trans Biomed Eng 60 (7):1796–1805CrossRefPubMed Bailón R, Garatachea N, de la Iglesia I, Casajús JA, Laguna P (2013) Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing. IEEE Trans Biomed Eng 60 (7):1796–1805CrossRefPubMed
2.
go back to reference Bailón R, Laguna P, Mainardi L, Sörnmo L (2007) Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC07), vol 29, pp 6674–6677 Bailón R, Laguna P, Mainardi L, Sörnmo L (2007) Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC07), vol 29, pp 6674–6677
3.
go back to reference Bailón R, Laouini G, Grao C, Orini M, Laguna P, Meste O (2011) The integral pulse frequency modulation with time–varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans Biomed Eng 58(3):642–652CrossRefPubMed Bailón R, Laouini G, Grao C, Orini M, Laguna P, Meste O (2011) The integral pulse frequency modulation with time–varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans Biomed Eng 58(3):642–652CrossRefPubMed
4.
go back to reference Bailón R, Mainardi L, Orini M, Sörnmo L, Laguna P (2010) Analysis of heart rate variability during exercise stress testing using respiratory information. Biomed Signal Process Control 5:299–310CrossRef Bailón R, Mainardi L, Orini M, Sörnmo L, Laguna P (2010) Analysis of heart rate variability during exercise stress testing using respiratory information. Biomed Signal Process Control 5:299–310CrossRef
5.
go back to reference Bailón R, Serrano P, Laguna P (2011) Influence of time-varying mean heart rate in coronary artery disease diagnostic performance of heart rate variability indices from exercise stress testing. J Electrocardiol 44:445–452CrossRefPubMed Bailón R, Serrano P, Laguna P (2011) Influence of time-varying mean heart rate in coronary artery disease diagnostic performance of heart rate variability indices from exercise stress testing. J Electrocardiol 44:445–452CrossRefPubMed
6.
go back to reference Blain G, Meste O, Blain A, Bermon S (2009) Time–frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Amer J Physiol Heart Circ Physiol 296:1651–1659CrossRef Blain G, Meste O, Blain A, Bermon S (2009) Time–frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Amer J Physiol Heart Circ Physiol 296:1651–1659CrossRef
7.
go back to reference Borresen J, Lambert M (2008) Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 38(8):633–646CrossRefPubMed Borresen J, Lambert M (2008) Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 38(8):633–646CrossRefPubMed
8.
go back to reference Chan HL, Huang HH, Lin JL (2001) Time-frequency analysis of heart rate variability during transient segments. Ann Biomed Eng 29(11):983–996CrossRefPubMed Chan HL, Huang HH, Lin JL (2001) Time-frequency analysis of heart rate variability during transient segments. Ann Biomed Eng 29(11):983–996CrossRefPubMed
9.
go back to reference Cottin F, Médigue C, Leprêtre P, Papelier Y, Koralsztein J, Billat V (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36(4):594–600CrossRefPubMed Cottin F, Médigue C, Leprêtre P, Papelier Y, Koralsztein J, Billat V (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36(4):594–600CrossRefPubMed
10.
go back to reference Cottin F, Papelier Y (2002) Regulation of cardiovascular system during dynamic exercise: integrative approach. Crit Rev Phys Rehabil Med 14(1):53–81 Cottin F, Papelier Y (2002) Regulation of cardiovascular system during dynamic exercise: integrative approach. Crit Rev Phys Rehabil Med 14(1):53–81
11.
go back to reference Cottin F, Papelier Y (2008) Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Amer J Physiol Heart Circ Physiol 295:H1150–H1155CrossRef Cottin F, Papelier Y (2008) Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Amer J Physiol Heart Circ Physiol 295:H1150–H1155CrossRef
12.
go back to reference Drezner JA, Fischbach P, Froelicher V, Marek J, Pelliccia A, Prutkin JM, Schmied CM, Sharma S, Wilson MG, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, Brjesson M, Cannon BC, Corrado D, DiFiori JP, Harmon KG, Heidbuchel H, Owens DS, Paul S, Salerno JC, Stein R, Vetter VL (2013) Normal electrocardiographic findings: recognising physiological adaptations in athletes. Br J Sports Med 47(3):125–136CrossRefPubMed Drezner JA, Fischbach P, Froelicher V, Marek J, Pelliccia A, Prutkin JM, Schmied CM, Sharma S, Wilson MG, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, Brjesson M, Cannon BC, Corrado D, DiFiori JP, Harmon KG, Heidbuchel H, Owens DS, Paul S, Salerno JC, Stein R, Vetter VL (2013) Normal electrocardiographic findings: recognising physiological adaptations in athletes. Br J Sports Med 47(3):125–136CrossRefPubMed
13.
go back to reference Hernando A, Hernando D, Garatachea N, Casajús JA, Bailón R (2015) Attenuation of the influence of cardiolocomotor coupling in heart rate variability interpretation during exercise test. In: 37nd Annual International Conference of the IEEE EMBS: 1508–1511 Hernando A, Hernando D, Garatachea N, Casajús JA, Bailón R (2015) Attenuation of the influence of cardiolocomotor coupling in heart rate variability interpretation during exercise test. In: 37nd Annual International Conference of the IEEE EMBS: 1508–1511
14.
go back to reference Hernando D, Bailón R, Almeida R, Hernández A (2014) QRS detection optimization in stress test recordings using evolutionary algorithms. XLI International Conference on Computing in Cardiology: 737–740 Hernando D, Bailón R, Almeida R, Hernández A (2014) QRS detection optimization in stress test recordings using evolutionary algorithms. XLI International Conference on Computing in Cardiology: 737–740
15.
go back to reference Hottenrott K, Hoos O, Esperer H (2006) Heart rate variability and physical exercise. Current Status Herz 31(6):544–552CrossRefPubMed Hottenrott K, Hoos O, Esperer H (2006) Heart rate variability and physical exercise. Current Status Herz 31(6):544–552CrossRefPubMed
16.
go back to reference Laguna P, Moody GB, Mark R (1998) Power spectral density of unevenly sampled data by least-square analysis. IEEE Trans Biomed Eng 45(6):698–715CrossRefPubMed Laguna P, Moody GB, Mark R (1998) Power spectral density of unevenly sampled data by least-square analysis. IEEE Trans Biomed Eng 45(6):698–715CrossRefPubMed
17.
go back to reference Llamedo M, Martínez JP (2014) QRS detectors performance comparison in public databases. XLI International Conference on Computing in Cardiology: 357–360 Llamedo M, Martínez JP (2014) QRS detectors performance comparison in public databases. XLI International Conference on Computing in Cardiology: 357–360
18.
go back to reference Mainardi L (2009) On the quantification of heart rate variability spectral parameters using time–frequency and time-varying methods. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys Eng Sci 367(1887):255–275CrossRef Mainardi L (2009) On the quantification of heart rate variability spectral parameters using time–frequency and time-varying methods. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys Eng Sci 367(1887):255–275CrossRef
19.
go back to reference Martin W, Flandrin P (1985) Wigner–Ville spectral analysis of nonstationary processes. IEEE Trans Acoust Speech Signal Process 33:1461–1470CrossRef Martin W, Flandrin P (1985) Wigner–Ville spectral analysis of nonstationary processes. IEEE Trans Acoust Speech Signal Process 33:1461–1470CrossRef
20.
go back to reference Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51(4):570–581CrossRefPubMed Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51(4):570–581CrossRefPubMed
21.
go back to reference Mateo J, Laguna P (2003) Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans Biomed Eng 50(3):334–343CrossRefPubMed Mateo J, Laguna P (2003) Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans Biomed Eng 50(3):334–343CrossRefPubMed
22.
go back to reference Meste O, Khaddoumi B, Blain G, Bermon S (2005) Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. IEEE Trans Biomed Eng 52(11):1921–1930CrossRefPubMed Meste O, Khaddoumi B, Blain G, Bermon S (2005) Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. IEEE Trans Biomed Eng 52(11):1921–1930CrossRefPubMed
23.
go back to reference Meste O, Rix H, Blain G (2009) ECG processing for exercise test. Advanced Biosignal Processing. Springer, Berlin Meste O, Rix H, Blain G (2009) ECG processing for exercise test. Advanced Biosignal Processing. Springer, Berlin
24.
go back to reference Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running: lessons from triathletes. Sports Med 39(3):179–206CrossRefPubMed Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running: lessons from triathletes. Sports Med 39(3):179–206CrossRefPubMed
25.
go back to reference Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, Nirmalan M, Wisloff U, Maltsev VA, Lakatta EG, Zhang H, Boyett MR (2014) Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension 64(6):1334–1343CrossRefPubMedPubMedCentral Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, Nirmalan M, Wisloff U, Maltsev VA, Lakatta EG, Zhang H, Boyett MR (2014) Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension 64(6):1334–1343CrossRefPubMedPubMedCentral
26.
go back to reference Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48:423–433CrossRefPubMed Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48:423–433CrossRefPubMed
27.
go back to reference Orini M, Bailón R, Mainardi L, Laguna P (2012) Synthesis of HRV signals characterized by predetermined time-frequency structure by means of time-varying ARMA models. Biomed Signal Process Control 7:141–150CrossRef Orini M, Bailón R, Mainardi L, Laguna P (2012) Synthesis of HRV signals characterized by predetermined time-frequency structure by means of time-varying ARMA models. Biomed Signal Process Control 7:141–150CrossRef
29.
go back to reference Rajendra AU, Paul JK, Kannathal N, Lim C, Suri J (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051CrossRef Rajendra AU, Paul JK, Kannathal N, Lim C, Suri J (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051CrossRef
30.
go back to reference Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Müller A, Piskorski J (2013) How to strengthen or weaken the HRV dependence on heart rate—description of the method and its perspectives. Int J Cardiol 168:1660–1663CrossRefPubMed Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Müller A, Piskorski J (2013) How to strengthen or weaken the HRV dependence on heart rate—description of the method and its perspectives. Int J Cardiol 168:1660–1663CrossRefPubMed
31.
go back to reference Sacha J, Pluta W (2005) Which heart rate is more variable: a slow or a fast one? It depends on the method of heart rate variability analysis. Folia Cardiol 12(suppl. D):1–4 Sacha J, Pluta W (2005) Which heart rate is more variable: a slow or a fast one? It depends on the method of heart rate variability analysis. Folia Cardiol 12(suppl. D):1–4
32.
go back to reference Sacha J, Pluta W (2008) Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int J Cardiol 128:444–447CrossRefPubMed Sacha J, Pluta W (2008) Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int J Cardiol 128:444–447CrossRefPubMed
33.
go back to reference Sarmiento S, García-Manso JM, Martín-González JM, Vaamonde D, Calderón J, Da Silva-Grigoletto ME (2013) Heart rate variability during high-intensity exercise. J Syst Sci Complex 26:104–116CrossRef Sarmiento S, García-Manso JM, Martín-González JM, Vaamonde D, Calderón J, Da Silva-Grigoletto ME (2013) Heart rate variability during high-intensity exercise. J Syst Sci Complex 26:104–116CrossRef
34.
go back to reference Wasserman K (2011) Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins, Philadelphia Wasserman K (2011) Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins, Philadelphia
35.
go back to reference Working group of ESC (1996) Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381CrossRef Working group of ESC (1996) Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381CrossRef
Metadata
Title
Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing
Publication date
26-09-2017
Published in
Medical & Biological Engineering & Computing / Issue 5/2018
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1724-9

Other articles of this Issue 5/2018

Medical & Biological Engineering & Computing 5/2018 Go to the issue

Premium Partner