Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Methodology for Modelling of Surface Potential, Ionization and Breakdown of Graphene Field-Effect Transistors

Authors : Iraj Sadegh Amiri, Mahdiar Ghadiry

Published in: Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter addresses the methodology used in this thesis, which is divided into three sections. Section 3.1 presents models for surface potential, lateral electric field and length of saturation velocity region (LVSR) of single- and double-gate GNRFETs. Section 3.2 proposes a model for ionization coefficient of GNR, and finally, Sect. 3.3 presents analytical approaches to calculate breakdown voltage of single- and double-gate GNRFETs. In addition, some parts of the results are presented here for the purpose of clarification and will not be repeated in the results and discussion chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Wong, Drain breakdown in submicron MOSFETs: a review. Microelectron. Reliab. 40(1), 3–15 (2000)CrossRef H. Wong, Drain breakdown in submicron MOSFETs: a review. Microelectron. Reliab. 40(1), 3–15 (2000)CrossRef
2.
go back to reference Q. Zhang, T. Fang, H. Xing, A. Seabaugh, D. Jena, Graphene nanoribbon tunnel transistors. Electron. Device Lett. IEEE 29(12), 1344–1346 (2008)CrossRef Q. Zhang, T. Fang, H. Xing, A. Seabaugh, D. Jena, Graphene nanoribbon tunnel transistors. Electron. Device Lett. IEEE 29(12), 1344–1346 (2008)CrossRef
3.
go back to reference M. Cheli, P. Michetti, G. Iannaccone, Model and performance evaluation of field-effect transistors based on epitaxial graphene on SiC. Electron. Devices IEEE Trans. 57(8), 1936–1941 (2010)CrossRef M. Cheli, P. Michetti, G. Iannaccone, Model and performance evaluation of field-effect transistors based on epitaxial graphene on SiC. Electron. Devices IEEE Trans. 57(8), 1936–1941 (2010)CrossRef
4.
go back to reference G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7(3), 394–397 (2008)CrossRef G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7(3), 394–397 (2008)CrossRef
5.
go back to reference T. Fang, A. Konar, H. Xing, D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109 (2007)CrossRef T. Fang, A. Konar, H. Xing, D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109 (2007)CrossRef
6.
go back to reference K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.A. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004) K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.A. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
7.
go back to reference M. El Banna, M. El Nokali, A pseudo-two-dimensional analysis of short channel MOSFETs. Solid-State Electron. 31(2), 269–274 (1988)CrossRef M. El Banna, M. El Nokali, A pseudo-two-dimensional analysis of short channel MOSFETs. Solid-State Electron. 31(2), 269–274 (1988)CrossRef
8.
go back to reference D. Krizaj, G. Charitat, S. Amon, A new analytical model for determination of breakdown voltage of Resurf structures. Solid-State Electron. 39(9), 1353–1358 (1996) D. Krizaj, G. Charitat, S. Amon, A new analytical model for determination of breakdown voltage of Resurf structures. Solid-State Electron. 39(9), 1353–1358 (1996)
9.
go back to reference M.A. Imam, M.A. Osman, A.A. Osman, Threshold voltage model for deep-submicron fully depleted SOI MOSFETs with back gate substrate induced surface potential effects. Microelectron. Reliab. 39(4), 487–495 (1999)CrossRef M.A. Imam, M.A. Osman, A.A. Osman, Threshold voltage model for deep-submicron fully depleted SOI MOSFETs with back gate substrate induced surface potential effects. Microelectron. Reliab. 39(4), 487–495 (1999)CrossRef
10.
go back to reference P.G. Harper, D.L. Weaire, Introduction to Physical Mathematics: CUP Archive (1985) P.G. Harper, D.L. Weaire, Introduction to Physical Mathematics: CUP Archive (1985)
11.
go back to reference O. Rubel, A. Potvin, D. Laughton, Generalized lucky-drift model for impact ionization in semiconductors with disorder. J. Phys. Condens. Matter 23(5), 055802 (2011)CrossRef O. Rubel, A. Potvin, D. Laughton, Generalized lucky-drift model for impact ionization in semiconductors with disorder. J. Phys. Condens. Matter 23(5), 055802 (2011)CrossRef
12.
go back to reference K. Yeom, J. Hinckley, J. Singh, Calculation of electron and hole impact ionization coefficients in SiGe alloys. J. Appl. Phys. 80(12), 6773–6782 (1996)CrossRef K. Yeom, J. Hinckley, J. Singh, Calculation of electron and hole impact ionization coefficients in SiGe alloys. J. Appl. Phys. 80(12), 6773–6782 (1996)CrossRef
13.
go back to reference S. McKenzie, M. Burt, A test of the lucky-drift theory of the impact ionisation coefficient using Monte Carlo simulation. J. Phys. C Solid State Phys. 19(12), 1959 (1986) S. McKenzie, M. Burt, A test of the lucky-drift theory of the impact ionisation coefficient using Monte Carlo simulation. J. Phys. C Solid State Phys. 19(12), 1959 (1986)
14.
go back to reference B. Ridley, Lucky-drift mechanism for impact ionisation in semiconductors. J. Phys. C Solid State Phys. 16(17), 3373 (1983)CrossRef B. Ridley, Lucky-drift mechanism for impact ionisation in semiconductors. J. Phys. C Solid State Phys. 16(17), 3373 (1983)CrossRef
15.
go back to reference J. Devreese, R. van Welzenis, R. Evrard, Impact ionisation probability in InSb. Appl. Phys. A 29(3), 125–132 (1982)CrossRef J. Devreese, R. van Welzenis, R. Evrard, Impact ionisation probability in InSb. Appl. Phys. A 29(3), 125–132 (1982)CrossRef
16.
go back to reference F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
17.
go back to reference W.-K. Tse, E. Hwang, S.D. Sarma, Ballistic hot electron transport in graphene. Appl. Phys. Lett. 93(2), 023128 (2008)CrossRef W.-K. Tse, E. Hwang, S.D. Sarma, Ballistic hot electron transport in graphene. Appl. Phys. Lett. 93(2), 023128 (2008)CrossRef
18.
go back to reference D. Berdebes, T. Low, M. Lundstrom, B.N. Center, Low Bias Transport in Graphene: An Introduction (2009) D. Berdebes, T. Low, M. Lundstrom, B.N. Center, Low Bias Transport in Graphene: An Introduction (2009)
19.
go back to reference V.E. Dorgan, M.-H. Bae, E. Pop, Mobility and saturation velocity in graphene on SiO2. arXiv preprint: arXiv:1005.2711 (2010) V.E. Dorgan, M.-H. Bae, E. Pop, Mobility and saturation velocity in graphene on SiO2. arXiv preprint: arXiv:1005.2711 (2010)
20.
go back to reference T. Fang, A. Konar, H. Xing, D. Jena, Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78(20), 205403 (2008)CrossRef T. Fang, A. Konar, H. Xing, D. Jena, Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78(20), 205403 (2008)CrossRef
21.
go back to reference R. Shishir, D. Ferry, Velocity saturation in intrinsic graphene. J. Phys. Condens. Matter 21(34), 344201 (2009)CrossRef R. Shishir, D. Ferry, Velocity saturation in intrinsic graphene. J. Phys. Condens. Matter 21(34), 344201 (2009)CrossRef
22.
go back to reference W. Maes, K. De Meyer, R. Van Overstraeten, Impact ionization in silicon: a review and update. Solid-State Electron. 33(6), 705–718 (1990)CrossRef W. Maes, K. De Meyer, R. Van Overstraeten, Impact ionization in silicon: a review and update. Solid-State Electron. 33(6), 705–718 (1990)CrossRef
Metadata
Title
Methodology for Modelling of Surface Potential, Ionization and Breakdown of Graphene Field-Effect Transistors
Authors
Iraj Sadegh Amiri
Mahdiar Ghadiry
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6550-7_3