Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Methods of Spiking Neural Networks

Author : Nikola K. Kasabov

Published in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spiking neural networks (SNN) are biologically inspired ANN where information is represented as binary events (spikes), similar to the event potentials in the brain, and learning is also inspired by principles in the brain. SNN are also universal computational mechanisms (Maass in Math Found Comput Sci 1998, 72–83, 1998 [1]). These and many other reasons that are discussed in this chapter make SNN a preferred computational paradigm for modelling temporal and spatio-temporal data and for building brain-inspired AI. This chapter gives the background information for SNN that is further used in the rest of the book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Maass, On the role of time and space in neural computation. Math. Found. Comput. Sci. 1998, 72–83 (1998)MathSciNet W. Maass, On the role of time and space in neural computation. Math. Found. Comput. Sci. 1998, 72–83 (1998)MathSciNet
4.
go back to reference W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002) W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)
5.
go back to reference L.M. Optican, B.J. Richmond, Temporal encoding of two-dimensional patterns by single units in promate inferior temporal cortex. III. Information theoretic analysis.pdf. J. Neurophysiol. 57(1), 162–177 (1987) L.M. Optican, B.J. Richmond, Temporal encoding of two-dimensional patterns by single units in promate inferior temporal cortex. III. Information theoretic analysis.pdf. J. Neurophysiol. 57(1), 162–177 (1987)
7.
go back to reference Z.F. Mainen, T.J. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995) Z.F. Mainen, T.J. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995)
8.
go back to reference S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)CrossRef S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)CrossRef
9.
go back to reference S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119
10.
go back to reference S.M. Bohte, H. La Poutre, J.N. Kok, unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002)CrossRef S.M. Bohte, H. La Poutre, J.N. Kok, unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002)CrossRef
11.
go back to reference H.N. Abdul Hamed, Novel Integrated Methods of Evolving Spiking Neural Network and Particles Swarm Optimization (Auckland University of Technology, 2012) H.N. Abdul Hamed, Novel Integrated Methods of Evolving Spiking Neural Network and Particles Swarm Optimization (Auckland University of Technology, 2012)
13.
14.
go back to reference K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning, in The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. https://doi.org/10.1109/ijcnn.2012.6252439 K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning, in The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. https://​doi.​org/​10.​1109/​ijcnn.​2012.​6252439
16.
go back to reference S.G. Wysoski, L. Benuskova, N. Kasabov, On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern, in Proceedings of International Conference on Artificial Neural Networks (Springer, Heidelberg, 2006), pp. 61–70 S.G. Wysoski, L. Benuskova, N. Kasabov, On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern, in Proceedings of International Conference on Artificial Neural Networks (Springer, Heidelberg, 2006), pp. 61–70
17.
go back to reference H.N. Abdul Hamed, N. Kasabov, Z. Michlovský, S.M. Shamsuddin, String Pattern Recognition Using Evolving Spiking Neural Networks and Quantum Inspired Particle Swarm Optimization, in Proceedings of International Conference on Neural Information Processing (Springer, Berlin, 2009), pp. 611–619 H.N. Abdul Hamed, N. Kasabov, Z. Michlovský, S.M. Shamsuddin, String Pattern Recognition Using Evolving Spiking Neural Networks and Quantum Inspired Particle Swarm Optimization, in Proceedings of International Conference on Neural Information Processing (Springer, Berlin, 2009), pp. 611–619
18.
go back to reference S.G. Wysoski, L. Benuskova, N. Kasabov, Fast and adaptive network of spiking neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15), 2563–2575 (2008) S.G. Wysoski, L. Benuskova, N. Kasabov, Fast and adaptive network of spiking neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15), 2563–2575 (2008)
19.
go back to reference S. G. Wysoski, L. Benuskova, N. Kasabov, Spiking Neural Networks for Text-Independent Speaker Authentication, in Artificial Neural Networks–ICANN, vol. 2 (Springer, Berlin, 2007), pp. 758–767 S. G. Wysoski, L. Benuskova, N. Kasabov, Spiking Neural Networks for Text-Independent Speaker Authentication, in Artificial Neural Networks–ICANN, vol. 2 (Springer, Berlin, 2007), pp. 758–767
20.
go back to reference S.M. Bothe, H. La Poutré, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2002), 426–435 (2002) S.M. Bothe, H. La Poutré, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2002), 426–435 (2002)
21.
go back to reference J. Gautrais, S. Thorpe, Rate coding versus temporal order coding: a theoretical approach. BioSystems 48(1998), 57–65 (1998)CrossRef J. Gautrais, S. Thorpe, Rate coding versus temporal order coding: a theoretical approach. BioSystems 48(1998), 57–65 (1998)CrossRef
22.
go back to reference B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in Proceedings of the International Joint Conference on Neural Networks, IEEE, vol. 4, pp. 2825–2830 (2003) B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in Proceedings of the International Joint Conference on Neural Networks, IEEE, vol. 4, pp. 2825–2830 (2003)
23.
go back to reference N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011 N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://​dx.​doi.​org/​10.​1016/​j.​neunet.​2015.​09.​011
25.
go back to reference A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRef A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRef
26.
go back to reference M. Nelson, J. Rinzel, The Hodgkin-Huxley model. in The book of Genesis, ed. by J. M. Bower, D. Beeman (Springer, New York, 1995), pp. 27–51 M. Nelson, J. Rinzel, The Hodgkin-Huxley model. in The book of Genesis, ed. by J. M. Bower, D. Beeman (Springer, New York, 1995), pp. 27–51
27.
go back to reference C. Meunier, I. Segev, Playing the Devil’s advocate : is the Hodgkin—Huxley model useful? Trends Neurosci. 25(11), 558–563 (2002) C. Meunier, I. Segev, Playing the Devil’s advocate : is the Hodgkin—Huxley model useful? Trends Neurosci. 25(11), 558–563 (2002)
28.
go back to reference A.F. Strassberg, L.J DeFelice, Limitation of the Hodgkin-Huxley formalism: effects of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 5(6), 843–855 (1993) (MIT Press) A.F. Strassberg, L.J DeFelice, Limitation of the Hodgkin-Huxley formalism: effects of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 5(6), 843–855 (1993) (MIT Press)
29.
go back to reference F. Bezanilla, C.M. Armstrong, Inactivation of the sodium channel. I. Sodium current experiments. J. General Physiol. 40(5), 549–566 (1997) F. Bezanilla, C.M. Armstrong, Inactivation of the sodium channel. I. Sodium current experiments. J. General Physiol. 40(5), 549–566 (1997)
31.
go back to reference E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(2003), 1569–1572 (2003)CrossRef E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(2003), 1569–1572 (2003)CrossRef
32.
go back to reference W. Gerstner, J.L. van Hemmen, Associative memory in a network of “spiking” neurons. Netw. Comput. Neural Syst. 3(2), 139–164 (1992) W. Gerstner, J.L. van Hemmen, Associative memory in a network of “spiking” neurons. Netw. Comput. Neural Syst. 3(2), 139–164 (1992)
33.
go back to reference W. Gerstner, Spiking Neurons, in Pulsed Neural Networks, ed. by W. Maass, C.M. Bishop (MIT Press, Cambridge, 1998), pp. 3–54 W. Gerstner, Spiking Neurons, in Pulsed Neural Networks, ed. by W. Maass, C.M. Bishop (MIT Press, Cambridge, 1998), pp. 3–54
34.
go back to reference A. Delorme, S.J. Thorpe, SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons. Netw. Comput. Neural Syst. 14(2003), 613–627 (2003)CrossRef A. Delorme, S.J. Thorpe, SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons. Netw. Comput. Neural Syst. 14(2003), 613–627 (2003)CrossRef
35.
go back to reference N. Kasabov, To spike or not to spike: a probabilistic spiking neural model. Neural Netw. 23(1), 16–19 (2010) N. Kasabov, To spike or not to spike: a probabilistic spiking neural model. Neural Netw. 23(1), 16–19 (2010)
36.
go back to reference L. Benuskova, N. Kasabov, Computational Neurogenetic Modelling (Springer, New York, 2007) L. Benuskova, N. Kasabov, Computational Neurogenetic Modelling (Springer, New York, 2007)
37.
go back to reference N. Kasabov, N.R. Schliebs, H. Kojima, Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease. IEEE Trans. Auton. Mental Dev. 3(4), 300–311 (2011) N. Kasabov, N.R. Schliebs, H. Kojima, Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease. IEEE Trans. Auton. Mental Dev. 3(4), 300–311 (2011)
38.
go back to reference N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014) N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)
40.
go back to reference A. Kasinski, F. Ponulak, Comparison of supervised learning methods for spike time. Int. J. Appl. Math. Comput. Sci. 16(1), 101–113 (2006) A. Kasinski, F. Ponulak, Comparison of supervised learning methods for spike time. Int. J. Appl. Math. Comput. Sci. 16(1), 101–113 (2006)
41.
go back to reference D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986) D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
42.
go back to reference S.M. Bohte, J.N. Kok, H. La Poutre, SpikeProp : Backpropagation for Networks of Spiking Neurons Error-Backpropagation in a Network of Spiking Neurons. ESANN (2000), pp. 419–424 S.M. Bohte, J.N. Kok, H. La Poutre, SpikeProp : Backpropagation for Networks of Spiking Neurons Error-Backpropagation in a Network of Spiking Neurons. ESANN (2000), pp. 419–424
44.
go back to reference G. Bi, M. Poo, Synaptic modifications in cultured hippocampal neurons : dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998) G. Bi, M. Poo, Synaptic modifications in cultured hippocampal neurons : dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
45.
go back to reference H. Markram, J. Lubke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(January), 213–215 (1997)CrossRef H. Markram, J. Lubke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(January), 213–215 (1997)CrossRef
46.
go back to reference T. Masquelier, R. Guyonneau, S.J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008)CrossRef T. Masquelier, R. Guyonneau, S.J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008)CrossRef
50.
go back to reference M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural Comput. 10(4), 821–835 (1998) M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural Comput. 10(4), 821–835 (1998)
51.
go back to reference W. Maass, E.D. Sontag, Neural systems as nonlinear filters. Neural Comput. 12(8), 1743–1772 (2000) W. Maass, E.D. Sontag, Neural systems as nonlinear filters. Neural Comput. 12(8), 1743–1772 (2000)
52.
go back to reference W. Maass, T. Natschlager, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002) W. Maass, T. Natschlager, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)
53.
go back to reference T. Natschläger, W. Maass, Spiking neurons and the induction of finite state machines. Theor. Comput. Sci. Nat. Comput. 287(1), pp. 251–265 (2002) T. Natschläger, W. Maass, Spiking neurons and the induction of finite state machines. Theor. Comput. Sci. Nat. Comput. 287(1), pp. 251–265 (2002)
54.
go back to reference H. Namarvar, J.-S. Liaw, T. Berger, A new dynamic synapse neural network for speech recognition, in 2001 Proceedings of the International Joint Conference on Neural Networks, IJCNN ’01 (2001) H. Namarvar, J.-S. Liaw, T. Berger, A new dynamic synapse neural network for speech recognition, in 2001 Proceedings of the International Joint Conference on Neural Networks, IJCNN ’01 (2001)
57.
go back to reference A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 22(4), 1–16 (2012) A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 22(4), 1–16 (2012)
58.
go back to reference A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoblea, N. Kasabov (2011), Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO, in International Joint Conference on Neural Networks. IEEE Publishing, San Jose, California, USA (2011) (In Print) A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoblea, N. Kasabov (2011), Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO, in International Joint Conference on Neural Networks. IEEE Publishing, San Jose, California, USA (2011) (In Print)
59.
go back to reference A. Mohemmed, S. Schliebs, N. Kasabov, Method for training a spiking neuron to associate input output spike trains. In Engineering Applications of Neural Networks. Springer, Corfu, Greece (2011). (in Print) A. Mohemmed, S. Schliebs, N. Kasabov, Method for training a spiking neuron to associate input output spike trains. In Engineering Applications of Neural Networks. Springer, Corfu, Greece (2011). (in Print)
60.
go back to reference M.C. van Rossum, A novel spike distance. Neural Comput. 13(4), 751–763 (2001) M.C. van Rossum, A novel spike distance. Neural Comput. 13(4), 751–763 (2001)
61.
go back to reference F. Ponulak, ReSuMe—new supervised learning method for spiking neural networks. Tech. report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005) F. Ponulak, ReSuMe—new supervised learning method for spiking neural networks. Tech. report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005)
63.
go back to reference W. Maass, T. Natschläger, H. Markram, Realtime computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002) W. Maass, T. Natschläger, H. Markram, Realtime computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)
64.
go back to reference E. Nordlie, M.-O. Gewaltig, H.E. Plesser, Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5(8), e1000456 (2009) E. Nordlie, M.-O. Gewaltig, H.E. Plesser, Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5(8), e1000456 (2009)
65.
go back to reference M.-O. Gewaltig, M. Diesmann, Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007) M.-O. Gewaltig, M. Diesmann, Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)
66.
go back to reference R. Gutig, H. Sompolinsky, The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006) R. Gutig, H. Sompolinsky, The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)
67.
go back to reference F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010). PMID: 19842989 F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010). PMID: 19842989
68.
go back to reference B. Schrauwen, J.V. Campenhout, Linking nonbinned spike train kernels to several existing spike train metrics. Neurocomputing 70(2007), 1247–1253 (2007)CrossRef B. Schrauwen, J.V. Campenhout, Linking nonbinned spike train kernels to several existing spike train metrics. Neurocomputing 70(2007), 1247–1253 (2007)CrossRef
69.
go back to reference J.D. Victor, K.P. Purpura, Metric-space analysis of spike trains: theory, algorithms and application. Netw. Comput. Neural Syst. 8(2), 127–164 (1997) J.D. Victor, K.P. Purpura, Metric-space analysis of spike trains: theory, algorithms and application. Netw. Comput. Neural Syst. 8(2), 127–164 (1997)
70.
go back to reference N. Sengupta, Neuromorphic computational models for machine learning and pattern recognition from multi-modal time series data, PhD Thesis, Auckland University of Technology (2018) N. Sengupta, Neuromorphic computational models for machine learning and pattern recognition from multi-modal time series data, PhD Thesis, Auckland University of Technology (2018)
Metadata
Title
Methods of Spiking Neural Networks
Author
Nikola K. Kasabov
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_4

Premium Partner