Skip to main content
Top

2019 | OriginalPaper | Chapter

8. Micro- and Nano-patterned Hydrogels Fabricated by Taking Advantage of Surface Instabilities

Authors : C. M. González-Henríquez, M. A. Sarabia Vallejos, Juan Rodríguez-Hernández

Published in: Wrinkled Polymer Surfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, several methodologies used to generate surface instabilities on hydrogel films are reviewed. The main advantage of surface instability usage for generating nano- and micro-patterned surfaces is their low cost, ease of fabrication, and the possibility of methodology scalement for industrial processes. Surfaces instabilities are generated by a mismatch of forces or stresses between the different strata of a film. Their inhomogeneous contraction or dilatation could eventually generate out-of-plane deformations; the shape and distribution of the patterns formed on top can be controlled according to the variation of the parameters used for their generation. Particularly, hydrogels have a remarkable importance in biomedical applications due to their high biocompatibility, low toxicity, and facile chemical or physical alteration, being able to be used as a base for shape memory devices, pH- or thermoresponsive materials, or antibacterial/antibiofouling devices. In the final section of this chapter, several applications of nano- or micro-patterned surfaces generated on hydrogels are mentioned and explained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Malmsten, Antimicrobial and antiviral hydrogels. Soft Matter 7, 8725 (2011)CrossRef M. Malmsten, Antimicrobial and antiviral hydrogels. Soft Matter 7, 8725 (2011)CrossRef
2.
go back to reference C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materials (Basel) 10, 232 (2017)CrossRef C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materials (Basel) 10, 232 (2017)CrossRef
3.
go back to reference M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)CrossRef M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)CrossRef
4.
go back to reference N.A. Peppas, J.Z. Hilt, A. Khademhosseini, et al., Hydrogels in biology and medicine: From molecular principles to Bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRef N.A. Peppas, J.Z. Hilt, A. Khademhosseini, et al., Hydrogels in biology and medicine: From molecular principles to Bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRef
5.
go back to reference A.S. Veiga, J.P. Schneider, Antimicrobial hydrogels for the treatment of infection. Biopolymers 100, 637–644 (2013)CrossRef A.S. Veiga, J.P. Schneider, Antimicrobial hydrogels for the treatment of infection. Biopolymers 100, 637–644 (2013)CrossRef
6.
go back to reference D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRef D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRef
7.
go back to reference R. Censi, P. Di Martino, T. Vermonden, et al., Hydrogels for protein delivery in tissue engineering. J. Control. Release 161, 680–692 (2012)CrossRef R. Censi, P. Di Martino, T. Vermonden, et al., Hydrogels for protein delivery in tissue engineering. J. Control. Release 161, 680–692 (2012)CrossRef
8.
go back to reference H.F. Chan, R. Zhao, G.A. Parada, et al., Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl. Acad. Sci. 115, 7503–7508 (2018)CrossRef H.F. Chan, R. Zhao, G.A. Parada, et al., Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl. Acad. Sci. 115, 7503–7508 (2018)CrossRef
9.
go back to reference J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRef J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRef
10.
go back to reference X. Huang, B. Li, W. Hong, et al., Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J. Mech. Phys. Solids 94, 88–104 (2016)CrossRef X. Huang, B. Li, W. Hong, et al., Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J. Mech. Phys. Solids 94, 88–104 (2016)CrossRef
11.
go back to reference Z. Zhou, Y. Li, T.F. Guo, et al., Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers (Basel). 8, 1–15 (2018) Z. Zhou, Y. Li, T.F. Guo, et al., Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers (Basel). 8, 1–15 (2018)
12.
go back to reference K. Subramani, Fabrication of hydrogel micropatterns by soft photolithography, in Emerging Nanotechnologies for Manufacturing, (Elsevier, Oxford, 2015), pp. 279–293CrossRef K. Subramani, Fabrication of hydrogel micropatterns by soft photolithography, in Emerging Nanotechnologies for Manufacturing, (Elsevier, Oxford, 2015), pp. 279–293CrossRef
13.
go back to reference M.J. Yin, M. Yao, S. Gao, et al., Rapid 3D patterning of Poly(Acrylic Acid) ionic hydrogel for miniature PH sensors. Adv. Mater. 28, 1394–1399 (2016)CrossRef M.J. Yin, M. Yao, S. Gao, et al., Rapid 3D patterning of Poly(Acrylic Acid) ionic hydrogel for miniature PH sensors. Adv. Mater. 28, 1394–1399 (2016)CrossRef
14.
go back to reference G.S. Jeong, D.Y. No, J. Lee, et al., Viscoelastic lithography for fabricating self-organizing soft micro-honeycomb structures with ultra-high aspect ratios. Nat. Commun. 7, 1–9 (2016) G.S. Jeong, D.Y. No, J. Lee, et al., Viscoelastic lithography for fabricating self-organizing soft micro-honeycomb structures with ultra-high aspect ratios. Nat. Commun. 7, 1–9 (2016)
15.
go back to reference G. Mallikarjunachari, P. Ghosh, Nanomechanical study of polymer-polymer thin film interface under applied service conditions. J. Appl. Polym. Sci. 133, 1–13 (2016)CrossRef G. Mallikarjunachari, P. Ghosh, Nanomechanical study of polymer-polymer thin film interface under applied service conditions. J. Appl. Polym. Sci. 133, 1–13 (2016)CrossRef
16.
go back to reference A. Rath, S. Mathesan, P. Ghosh, Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked Chitosan biopolymer. J. Mech. Behav. Biomed. Mater. 55, 42–52 (2015)CrossRef A. Rath, S. Mathesan, P. Ghosh, Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked Chitosan biopolymer. J. Mech. Behav. Biomed. Mater. 55, 42–52 (2015)CrossRef
17.
go back to reference G. Mallikarjunachari, P. Ghosh, Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques. Polym. (United Kingdom) 90, 53–66 (2016) G. Mallikarjunachari, P. Ghosh, Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques. Polym. (United Kingdom) 90, 53–66 (2016)
18.
go back to reference G. Mallikarjunachari, P. Ghosh, Application of nanomechanical response of wrinkled thin films in surface feature generation. Eur. Polym. J. 89, 524–538 (2017)CrossRef G. Mallikarjunachari, P. Ghosh, Application of nanomechanical response of wrinkled thin films in surface feature generation. Eur. Polym. J. 89, 524–538 (2017)CrossRef
19.
go back to reference F. Girard, M. Antoni, K. Sefiane, On the effect of marangoni flow on evaporation rates of heated water drops. Langmuir 24, 9207–9210 (2008)CrossRef F. Girard, M. Antoni, K. Sefiane, On the effect of marangoni flow on evaporation rates of heated water drops. Langmuir 24, 9207–9210 (2008)CrossRef
20.
go back to reference J.S. Arora, J.C. Cremaldi, M.K. Holleran, et al., Hydrogel inverse replicas of breath figures exhibit superoleophobicity due to patterned surface roughness. Langmuir 32, 1009–1017 (2016)CrossRef J.S. Arora, J.C. Cremaldi, M.K. Holleran, et al., Hydrogel inverse replicas of breath figures exhibit superoleophobicity due to patterned surface roughness. Langmuir 32, 1009–1017 (2016)CrossRef
21.
go back to reference A. Gallardo, N. Luján, H. Reinecke, et al., Chemical and topographical modification of polycarbonate surfaces through diffusion/photocuring processes of hydrogel precursors based on Vinylpyrrolidone. Langmuir 2017, acs.langmuir.6b04143. A. Gallardo, N. Luján, H. Reinecke, et al., Chemical and topographical modification of polycarbonate surfaces through diffusion/photocuring processes of hydrogel precursors based on Vinylpyrrolidone. Langmuir 2017, acs.langmuir.6b04143.
22.
go back to reference H. Izawa, Preparation of biobased wrinkled surfaces via lignification-mimetic reactions and drying: A new approach for developing surface wrinkling. Polym. J. 49, 759–765 (2017)CrossRef H. Izawa, Preparation of biobased wrinkled surfaces via lignification-mimetic reactions and drying: A new approach for developing surface wrinkling. Polym. J. 49, 759–765 (2017)CrossRef
23.
go back to reference J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf). 110, 114–123 (2017)CrossRef J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf). 110, 114–123 (2017)CrossRef
24.
go back to reference M. Kato, Y. Tsuboi, A. Kikuchi, et al., Hydrogel adhesion with wrinkle formation by spatial control of polymer networks. J. Phys. Chem. B 120, 5042–5046 (2016)CrossRef M. Kato, Y. Tsuboi, A. Kikuchi, et al., Hydrogel adhesion with wrinkle formation by spatial control of polymer networks. J. Phys. Chem. B 120, 5042–5046 (2016)CrossRef
25.
go back to reference Y. Tokudome, H. Kuniwaki, K. Suzuki, et al., Thermoresponsive wrinkles on hydrogels for soft actuators. Adv. Mater. Interfaces 3, 1–5 (2016) Y. Tokudome, H. Kuniwaki, K. Suzuki, et al., Thermoresponsive wrinkles on hydrogels for soft actuators. Adv. Mater. Interfaces 3, 1–5 (2016)
26.
go back to reference C.M. Gonzalez-Henriquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, et al., Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer (Guildf). 101, 24–33 (2016)CrossRef C.M. Gonzalez-Henriquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, et al., Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer (Guildf). 101, 24–33 (2016)CrossRef
27.
go back to reference C.M. González-Henríquez, P.A. Alfaro-Cerda, D.F. Veliz-Silva, et al., Micro-wrinkled hydrogel patterned surfaces using PH-sensitive monomers. Appl. Surf. Sci. 457, 902–913 (2018)CrossRef C.M. González-Henríquez, P.A. Alfaro-Cerda, D.F. Veliz-Silva, et al., Micro-wrinkled hydrogel patterned surfaces using PH-sensitive monomers. Appl. Surf. Sci. 457, 902–913 (2018)CrossRef
28.
go back to reference C.M. González-Henríquez, G.D.C. Pizarro, M.A. Sarabia-Vallejos, et al., Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers. Biochim. Biophys. Acta Biomembr. 1848, 2126–2137 (2015)CrossRef C.M. González-Henríquez, G.D.C. Pizarro, M.A. Sarabia-Vallejos, et al., Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers. Biochim. Biophys. Acta Biomembr. 1848, 2126–2137 (2015)CrossRef
29.
go back to reference C.M. Gonzalez-Henriquez, G. Pizarro, C. del, E.N. Córdova-Alarcón, et al., Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chem. Phys. Lipids 196, 13–23 (2016)CrossRef C.M. Gonzalez-Henriquez, G. Pizarro, C. del, E.N. Córdova-Alarcón, et al., Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chem. Phys. Lipids 196, 13–23 (2016)CrossRef
30.
go back to reference C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, Electrospinning deposition of hydrogel fibers used as Scaffold for biomembranes. Thermal stability of DPPC corroborated by Ellipsometry. Chem. Phys. Lipids 190, 51–60 (2015)CrossRef C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, Electrospinning deposition of hydrogel fibers used as Scaffold for biomembranes. Thermal stability of DPPC corroborated by Ellipsometry. Chem. Phys. Lipids 190, 51–60 (2015)CrossRef
31.
go back to reference M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRef M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRef
32.
go back to reference P. Viswanathan, M. Guvendiren, W. Chua, et al., Mimicking the topography of the epidermal-dermal interface with Elastomer substrates. Integr. Biol. (Camb). 8, 21–29 (2016)CrossRef P. Viswanathan, M. Guvendiren, W. Chua, et al., Mimicking the topography of the epidermal-dermal interface with Elastomer substrates. Integr. Biol. (Camb). 8, 21–29 (2016)CrossRef
33.
go back to reference M. Guvendiren, J.A. Burdick, Stem cell response to spatially and temporally displayed and reversible surface topography. Adv. Healthc. Mater. 2, 155–164 (2013)CrossRef M. Guvendiren, J.A. Burdick, Stem cell response to spatially and temporally displayed and reversible surface topography. Adv. Healthc. Mater. 2, 155–164 (2013)CrossRef
34.
go back to reference A. Paul, M. Stührenberg, S. Chen, et al., Micro- and nano-patterned Elastin-like polypeptide hydrogels for stem cell culture. Soft Matter 13, 5665–5675 (2017)CrossRef A. Paul, M. Stührenberg, S. Chen, et al., Micro- and nano-patterned Elastin-like polypeptide hydrogels for stem cell culture. Soft Matter 13, 5665–5675 (2017)CrossRef
35.
go back to reference Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)CrossRef Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)CrossRef
36.
go back to reference H.S. Shin, Y.M. Kook, H.J. Hong, et al., Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater. 45, 121 (2016)CrossRef H.S. Shin, Y.M. Kook, H.J. Hong, et al., Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater. 45, 121 (2016)CrossRef
37.
go back to reference A.I. Neto, K. Demir, A.A. Popova, et al., Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns. Adv. Mater. 28, 7613–7619 (2016)CrossRef A.I. Neto, K. Demir, A.A. Popova, et al., Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns. Adv. Mater. 28, 7613–7619 (2016)CrossRef
Metadata
Title
Micro- and Nano-patterned Hydrogels Fabricated by Taking Advantage of Surface Instabilities
Authors
C. M. González-Henríquez
M. A. Sarabia Vallejos
Juan Rodríguez-Hernández
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05123-5_8

Premium Partners