Skip to main content
Top

2023 | OriginalPaper | Chapter

2. Micro-photoluminescence (µ-PL)

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Photoluminescence is a form of light emission from a material which is initiated by the excitation of the electronic system of the material by incident photons. New photons can then be emitted, as the excited electrons relaxes back to their ground states and the emitted photons can reveal important information of the electronic system of the material. Micro-photoluminescence, described in this chapter, is a versatile technique for characterization and studies of material optical properties on a smaller length scale. Basic principles and instrumentation are described and relevant examples are provided for heterostructures and nanostructured semiconductor materials with the focus on analysis of fundamental properties relevant for today’s applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Valenta, J., & Pelant, I. (2012). Luminescence spectroscopy of semiconductors. Oxford University Press. Valenta, J., & Pelant, I. (2012). Luminescence spectroscopy of semiconductors. Oxford University Press.
2.
go back to reference Sychugov, I., Valenta, J., & Linnros, J. (2017). Probing silicon quantum dots by single-dot techniques. Nanotechnology, 28, 072002.CrossRef Sychugov, I., Valenta, J., & Linnros, J. (2017). Probing silicon quantum dots by single-dot techniques. Nanotechnology, 28, 072002.CrossRef
3.
go back to reference Goltsman, G. N., Semenov, A. D., Gousev, Y. P., Zorin, M. A., Gogidze, I. G., Gershenzon, E. M., Lang, P. T., Knott, W. J., & Renk, K. F. (1991). Sensitive picosecond NbN detector for radiation from millimeter wavelengths to visible light. Superconductor Science and Technology, 4, 453–456.CrossRef Goltsman, G. N., Semenov, A. D., Gousev, Y. P., Zorin, M. A., Gogidze, I. G., Gershenzon, E. M., Lang, P. T., Knott, W. J., & Renk, K. F. (1991). Sensitive picosecond NbN detector for radiation from millimeter wavelengths to visible light. Superconductor Science and Technology, 4, 453–456.CrossRef
4.
go back to reference Bulter, A. (2015). Single-photon counting detectors for the visible range between 300 and 1000 nm. In P. Kapusta (Ed.), Advanced photon counting. Springer. Bulter, A. (2015). Single-photon counting detectors for the visible range between 300 and 1000 nm. In P. Kapusta (Ed.), Advanced photon counting. Springer.
5.
go back to reference Boyle, W. S., & Smith, G. E. (1970). Charge coupled semiconductor devices. The Bell System Technical Journal, 49, 587–593.CrossRef Boyle, W. S., & Smith, G. E. (1970). Charge coupled semiconductor devices. The Bell System Technical Journal, 49, 587–593.CrossRef
6.
go back to reference Greben, M., Khoroshyy, P., Sychugov, I., & Valenta, J. (2019). Non-exponential decay kinetics: Correct assessment and description illustrated by slow luminescence of Si nanostructures. Applied Spectroscopy Reviews, 54, 1–44.CrossRef Greben, M., Khoroshyy, P., Sychugov, I., & Valenta, J. (2019). Non-exponential decay kinetics: Correct assessment and description illustrated by slow luminescence of Si nanostructures. Applied Spectroscopy Reviews, 54, 1–44.CrossRef
7.
go back to reference Omanakuttan, G., Stergiakis, S., Sahgal, A., Sychugov, I., Lourdudoss, S., & Sun, Y.-T. (2017). Epitaxial lateral overgrowth of GaxIn1-xP toward direct GaxIn1-xP/Si heterojunction. Physica Status Solidi A, 214, 1600631.CrossRef Omanakuttan, G., Stergiakis, S., Sahgal, A., Sychugov, I., Lourdudoss, S., & Sun, Y.-T. (2017). Epitaxial lateral overgrowth of GaxIn1-xP toward direct GaxIn1-xP/Si heterojunction. Physica Status Solidi A, 214, 1600631.CrossRef
8.
go back to reference Pan, D. X., Fu, Y. P., Chen, J., Czech, K. J., Wright, J. C., & Jin, S. (2018). Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Letters, 18, 1807–1813.CrossRef Pan, D. X., Fu, Y. P., Chen, J., Czech, K. J., Wright, J. C., & Jin, S. (2018). Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Letters, 18, 1807–1813.CrossRef
9.
go back to reference Empedocles, S. A., Norris, D. J., & Bawendi, M. G. (1996). Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Physical Review Letters, 77, 3873–3876.CrossRef Empedocles, S. A., Norris, D. J., & Bawendi, M. G. (1996). Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Physical Review Letters, 77, 3873–3876.CrossRef
10.
go back to reference Sychugov, I., Pevere, F., Luo, J.-W., Zunger, A., & Linnros, J. (2016). Single-dot absorption spectroscopy and theory of silicon nanocrystals. Physical Reviews B, 93, 161413. Sychugov, I., Pevere, F., Luo, J.-W., Zunger, A., & Linnros, J. (2016). Single-dot absorption spectroscopy and theory of silicon nanocrystals. Physical Reviews B, 93, 161413.
11.
go back to reference Kuhlmann, A. V., Prechtel, J. H., Houel, J., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2015). Transform-limited single photons from a single quantum dot. Nature Communication, 6, 8204. Kuhlmann, A. V., Prechtel, J. H., Houel, J., Ludwig, A., Reuter, D., Wieck, A. D., & Warburton, R. J. (2015). Transform-limited single photons from a single quantum dot. Nature Communication, 6, 8204.
12.
go back to reference Bayer, M., Stern, O., Hawrylak, P., Fafard, S., & Forchel, A. (2000). Hidden symmetries in the energy levels of excitonic ‘artificial atoms.’ Nature, 405, 923–926.CrossRef Bayer, M., Stern, O., Hawrylak, P., Fafard, S., & Forchel, A. (2000). Hidden symmetries in the energy levels of excitonic ‘artificial atoms.’ Nature, 405, 923–926.CrossRef
13.
go back to reference Ho, J. F., Tatebayashi, J., Sergent, S., Fong, C. F., Ota, Y., Iwamoto, S., & Arakawa, Y. (2016). A nanowire-based plasmonic quantum dot laser. Nano Letters, 16, 2845–2850.CrossRef Ho, J. F., Tatebayashi, J., Sergent, S., Fong, C. F., Ota, Y., Iwamoto, S., & Arakawa, Y. (2016). A nanowire-based plasmonic quantum dot laser. Nano Letters, 16, 2845–2850.CrossRef
14.
go back to reference Abbarchi, M., Kuroda, T., Duval, R., Mano, T., & Sakoda, K. (2011). Scanning Fabry-Perot interferometer with largely tuneable free spectral range for high resolution spectroscopy of single quantum dots. Review of Scientific Instruments, 82, 073103. Abbarchi, M., Kuroda, T., Duval, R., Mano, T., & Sakoda, K. (2011). Scanning Fabry-Perot interferometer with largely tuneable free spectral range for high resolution spectroscopy of single quantum dots. Review of Scientific Instruments, 82, 073103.
15.
go back to reference Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S., & Yamamoto, Y. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594–597.CrossRef Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S., & Yamamoto, Y. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594–597.CrossRef
16.
go back to reference Yin, C. Y., Chen, L. Y., Song, N., Lv, Y., Hu, F. R., Sun, C., Yu, W. W., Zhang, C. F., Wang, X. Y., Zhang, Y., & Xiao, M. (2017). Bright-exciton fine-structure splittings in single perovskite nanocrystals. Physics Review Letters, 119, 026401. Yin, C. Y., Chen, L. Y., Song, N., Lv, Y., Hu, F. R., Sun, C., Yu, W. W., Zhang, C. F., Wang, X. Y., Zhang, Y., & Xiao, M. (2017). Bright-exciton fine-structure splittings in single perovskite nanocrystals. Physics Review Letters, 119, 026401.
17.
go back to reference Fu, M., Tamarat, P., Huang, H., Even, J., Rogach, A. L., & Lounis, B. (2017). Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Letters, 17, 2895–2901.CrossRef Fu, M., Tamarat, P., Huang, H., Even, J., Rogach, A. L., & Lounis, B. (2017). Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Letters, 17, 2895–2901.CrossRef
18.
go back to reference Efros, A. L., & Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11, 661–671.CrossRef Efros, A. L., & Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11, 661–671.CrossRef
19.
go back to reference Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802–804.CrossRef Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802–804.CrossRef
20.
go back to reference Schlegel, G., Bohnenberger, J., Potapova, I., & Mews, A. (2002). Fluorescence decay time of single semiconductor nanocrystals. Physical Review Letters, 88, 137401.CrossRef Schlegel, G., Bohnenberger, J., Potapova, I., & Mews, A. (2002). Fluorescence decay time of single semiconductor nanocrystals. Physical Review Letters, 88, 137401.CrossRef
21.
go back to reference Schweickert, L., Jons, K. D., Zeuner, K. D., da Silva, S. F. C., Huang, H. Y., Lettner, T., Reindl, M., Zichi, J., Trotta, R., Rastelli, A., Zwiller, V. (2018). On-demand generation of background-free single photons from a solid-state source. Applied Physics Letters, 112, 093106. Schweickert, L., Jons, K. D., Zeuner, K. D., da Silva, S. F. C., Huang, H. Y., Lettner, T., Reindl, M., Zichi, J., Trotta, R., Rastelli, A., Zwiller, V. (2018). On-demand generation of background-free single photons from a solid-state source. Applied Physics Letters, 112, 093106.
22.
go back to reference Sanatinia, R., Swillo, M., & Anand, S. (2012). Surface second-harmonic generation from vertical GaP nanopillars. Nano Letters, 12, 820–826.CrossRef Sanatinia, R., Swillo, M., & Anand, S. (2012). Surface second-harmonic generation from vertical GaP nanopillars. Nano Letters, 12, 820–826.CrossRef
Metadata
Title
Micro-photoluminescence (µ-PL)
Author
Ilya Sychugov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-26434-4_2

Premium Partners