Skip to main content
Top
Published in: International Journal of Material Forming 5/2018

29-11-2017 | Original Research

Micromechanical modeling of intrinsic and specimen size effects in microforming

Authors: T. Yalçinkaya, İ. Özdemir, I. Simonovski

Published in: International Journal of Material Forming | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Size effect is a crucial phenomenon in the microforming processes of metallic alloys involving only limited amount of grains. At this scale intrinsic size effect arises due to the size of the grains and the specimen/statistical size effect occurs due to the number of grains where the properties of individual grains become decisive on the mechanical behavior of the material. This paper deals with the micromechanical modeling of the size dependent plastic response of polycrystalline metallic materials at micron scale through a strain gradient crystal plasticity framework. The model is implemented into a Finite Element software as a coupled implicit user element subroutine where the plastic slip and displacement fields are taken as global variables. Uniaxial tensile tests are conducted for microstructures having different number of grains with random orientations in plane strain setting. The influence of the grain size and number on both local and macroscopic behavior of the material is investigated. The attention is focussed on the effect of the grain boundary conditions, deformation rate and the grain size on the mechanical behavior of micron sized specimens. The model is intrinsically capable of capturing both experimentally observed phenomena thanks to the incorporated internal length scale and the crystallographic orientation definition of each grain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behavior of polycrystalline aggregates. part 1: F.e. model. Int J Plast 17:513–536CrossRefMATH Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behavior of polycrystalline aggregates. part 1: F.e. model. Int J Plast 17:513–536CrossRefMATH
2.
go back to reference Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–662CrossRef Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–662CrossRef
3.
go back to reference Borg U (2007) A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur J Mech A Solids 26:313–324CrossRefMATH Borg U (2007) A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur J Mech A Solids 26:313–324CrossRefMATH
4.
go back to reference Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mat Sci Eng A 528:7674–7683CrossRef Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mat Sci Eng A 528:7674–7683CrossRef
5.
go back to reference Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mat Sci Eng A 527:6638–6648CrossRef Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mat Sci Eng A 527:6638–6648CrossRef
6.
go back to reference Chen F, Tsai J (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177:146–149CrossRef Chen F, Tsai J (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177:146–149CrossRef
7.
go back to reference Delannay L, Beringhier M, Chastel Y, Loge RE (2005) Simulation of cup-drawing based on crystal plasticity applied to reduced grain samplings. Mater Sci Forum 495-497:1639–1644CrossRef Delannay L, Beringhier M, Chastel Y, Loge RE (2005) Simulation of cup-drawing based on crystal plasticity applied to reduced grain samplings. Mater Sci Forum 495-497:1639–1644CrossRef
8.
go back to reference Diard O, Leclercq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3d multicrystalline aggregates plasticity: application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21:691–722CrossRefMATH Diard O, Leclercq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3d multicrystalline aggregates plasticity: application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21:691–722CrossRefMATH
9.
go back to reference Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218:103–113CrossRefMATH Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218:103–113CrossRefMATH
10.
go back to reference Ekh M, Grymer M, Runesson K, Svedberg T (2007) Gradient crystal plasticity as part of the computational modelling of polycrystals. Int J Numer Meth Engng 72:197–220MathSciNetCrossRefMATH Ekh M, Grymer M, Runesson K, Svedberg T (2007) Gradient crystal plasticity as part of the computational modelling of polycrystals. Int J Numer Meth Engng 72:197–220MathSciNetCrossRefMATH
11.
go back to reference Fu MW, Chan WL (2014) Micro-scaled products development via microforming. Springer, LondonCrossRef Fu MW, Chan WL (2014) Micro-scaled products development via microforming. Springer, LondonCrossRef
12.
go back to reference Fulop T, Brekelmans WAM, Geers MGD (2006) Size effects from grain statistics in ultra-thin metal sheets. J Mater Process Technol 174:233–238CrossRef Fulop T, Brekelmans WAM, Geers MGD (2006) Size effects from grain statistics in ultra-thin metal sheets. J Mater Process Technol 174:233–238CrossRef
13.
go back to reference Gau J, Principe C, Wang J (2007) An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Technol 184:42–46CrossRef Gau J, Principe C, Wang J (2007) An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Technol 184:42–46CrossRef
14.
go back to reference Geiger M, Kleinerb M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50:445–462CrossRef Geiger M, Kleinerb M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50:445–462CrossRef
15.
go back to reference Gottschalk D, McBride A, Reddy BD, Javili A, Wriggers P, Hirschberger CB (2016) Computational and theoretical aspects of a grain-bundary model that accounts for grain misorientation and grain-boundary orientation. Comp Mater Sci 111:443–459CrossRef Gottschalk D, McBride A, Reddy BD, Javili A, Wriggers P, Hirschberger CB (2016) Computational and theoretical aspects of a grain-bundary model that accounts for grain misorientation and grain-boundary orientation. Comp Mater Sci 111:443–459CrossRef
16.
go back to reference Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRef Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRef
17.
go back to reference Gurtin ME (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J Mech Phys Solids 56:640–662MathSciNetCrossRefMATH Gurtin ME (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J Mech Phys Solids 56:640–662MathSciNetCrossRefMATH
18.
go back to reference Kim G, Ni J, Koc M (2006) Modeling of the size effects on the behavior of metals in microscale deformation processes. ASME J Manuf Sci Eng 129:470–476CrossRef Kim G, Ni J, Koc M (2006) Modeling of the size effects on the behavior of metals in microscale deformation processes. ASME J Manuf Sci Eng 129:470–476CrossRef
19.
go back to reference Kim HS, Lee YS (2011) Size dependence of flow stress and plastic behaviour in microforming of polycrystalline metallic materials. Proc Inst Mech Eng C J Mech Eng Sci 226:403–412CrossRef Kim HS, Lee YS (2011) Size dependence of flow stress and plastic behaviour in microforming of polycrystalline metallic materials. Proc Inst Mech Eng C J Mech Eng Sci 226:403–412CrossRef
20.
go back to reference Klusemann B, Yalçinkaya T (2013) Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int J Plast 48:168–188CrossRef Klusemann B, Yalçinkaya T (2013) Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int J Plast 48:168–188CrossRef
21.
go back to reference Klusemann B, Yalçinkaya T, Geers MGD, Svendsen B (2013) Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comp Mater Sci 80:51– 60CrossRef Klusemann B, Yalçinkaya T, Geers MGD, Svendsen B (2013) Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comp Mater Sci 80:51– 60CrossRef
22.
go back to reference Kruzel P, Madej L, Perzynski K, Banas K (2014) Development of three-dimensional adaptive mesh generation for multiscale applications. Int J Multiscale Eng 12:257–269CrossRef Kruzel P, Madej L, Perzynski K, Banas K (2014) Development of three-dimensional adaptive mesh generation for multiscale applications. Int J Multiscale Eng 12:257–269CrossRef
23.
go back to reference Lu HN, Wei DB, Jiang ZY, Liu XH, Manabe K (2013) Modelling of size effects in microforming process with consideration of grained heterogeneity. Comput Mater Sci 77:44–52CrossRef Lu HN, Wei DB, Jiang ZY, Liu XH, Manabe K (2013) Modelling of size effects in microforming process with consideration of grained heterogeneity. Comput Mater Sci 77:44–52CrossRef
24.
go back to reference Madej L, Kruzel P, Cybulka P, Perzynski K, Banas K (2012) Generation of dedicated finite element meshes for multiscale applications with delaunay triangulation and adaptive finite element - cellular automata algorithms. Comput Meth Mater Sci 12:85–96 Madej L, Kruzel P, Cybulka P, Perzynski K, Banas K (2012) Generation of dedicated finite element meshes for multiscale applications with delaunay triangulation and adaptive finite element - cellular automata algorithms. Comput Meth Mater Sci 12:85–96
25.
go back to reference Melchior MA, Delannay L (2006) A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size. Comp Mater Sci 37:557–564CrossRef Melchior MA, Delannay L (2006) A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size. Comp Mater Sci 37:557–564CrossRef
26.
go back to reference Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRefMATH Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRefMATH
27.
go back to reference Ozdemir I (2014) Grain statistics induced size effect in the expansion of metallic micro rings. Int J Mech Sci 87:52–59CrossRef Ozdemir I (2014) Grain statistics induced size effect in the expansion of metallic micro rings. Int J Mech Sci 87:52–59CrossRef
28.
go back to reference Ozdemir I, Yalcinkaya T (2014) Modeling of dislocation–grain boundary interactions in a strain gradient crystal plasticity framework. Comput Mech 54:255–268MathSciNetCrossRefMATH Ozdemir I, Yalcinkaya T (2014) Modeling of dislocation–grain boundary interactions in a strain gradient crystal plasticity framework. Comput Mech 54:255–268MathSciNetCrossRefMATH
29.
go back to reference Ozdemir I, Yalcinkaya T (2017) Strain gradient crystal plasticity: intragranular microstructure formation. Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp 1–29 Ozdemir I, Yalcinkaya T (2017) Strain gradient crystal plasticity: intragranular microstructure formation. Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp 1–29
30.
go back to reference Prakash A, Lebensohn RA (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast fourier transforms. Modelling Simul Mater Sci Eng 17:064010CrossRef Prakash A, Lebensohn RA (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast fourier transforms. Modelling Simul Mater Sci Eng 17:064010CrossRef
31.
go back to reference Prakash A, Weygand SM, Riedel H (2009) Modeling the evolution of texture and grain shape in mg alloy az31 using the crystal plasticity finite element method. Comp Mater Sci 45:744–750CrossRef Prakash A, Weygand SM, Riedel H (2009) Modeling the evolution of texture and grain shape in mg alloy az31 using the crystal plasticity finite element method. Comp Mater Sci 45:744–750CrossRef
32.
go back to reference Quey R, Dawson PR, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200:1729–1745CrossRefMATH Quey R, Dawson PR, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200:1729–1745CrossRefMATH
33.
go back to reference Szyndler J, Madej L (2015) Numerical analysis of the influence of number of grains, fe mesh density and friction coefficient on representativeness aspects of the polycrystalline digital material representation plane strain deformation case study. Comp Mater Sci 96:200–2013CrossRef Szyndler J, Madej L (2015) Numerical analysis of the influence of number of grains, fe mesh density and friction coefficient on representativeness aspects of the polycrystalline digital material representation plane strain deformation case study. Comp Mater Sci 96:200–2013CrossRef
34.
go back to reference van Beers PRM, McShane GJ, Kouznetsova VG, Geers MGD (2013) Grain boundary interface mechanics in strain gradient crystal plasticity. J Mech Phys Solids 61:2659–2679MathSciNetCrossRef van Beers PRM, McShane GJ, Kouznetsova VG, Geers MGD (2013) Grain boundary interface mechanics in strain gradient crystal plasticity. J Mech Phys Solids 61:2659–2679MathSciNetCrossRef
35.
go back to reference Van Houtte P, Kanjarla AK, Van Bael A, Seefeldt M, Delannay L (2006) Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. Eur J Mech A Solids 25:634–648MathSciNetCrossRefMATH Van Houtte P, Kanjarla AK, Van Bael A, Seefeldt M, Delannay L (2006) Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. Eur J Mech A Solids 25:634–648MathSciNetCrossRefMATH
36.
go back to reference Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Techn 58:566–587CrossRef Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Techn 58:566–587CrossRef
37.
go back to reference Vollertsen F, Schulze Niehoff H, Hu Z (2006) State of the art in micro forming. Int J Mach Tool Manu 46:1172–1179CrossRef Vollertsen F, Schulze Niehoff H, Hu Z (2006) State of the art in micro forming. Int J Mach Tool Manu 46:1172–1179CrossRef
38.
go back to reference Voyiadjis GZ, Abu Al-Rub RK (2005) Gradient plasticity theory with a variable length scale parameter. Int J Solids Struct 42:3998–4029CrossRefMATH Voyiadjis GZ, Abu Al-Rub RK (2005) Gradient plasticity theory with a variable length scale parameter. Int J Solids Struct 42:3998–4029CrossRefMATH
39.
go back to reference Yalcinkaya T (2011) Microstructure evolution in crystal plasticity : strain path effects and dislocation slip patterning. Ph.D thesis. Eindhoven University of Technology, The Netherlands Yalcinkaya T (2011) Microstructure evolution in crystal plasticity : strain path effects and dislocation slip patterning. Ph.D thesis. Eindhoven University of Technology, The Netherlands
40.
go back to reference Yalcinkaya T (2017) Strain gradient crystal plasticity: Thermodynamics and implementation. Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp 1–32 Yalcinkaya T (2017) Strain gradient crystal plasticity: Thermodynamics and implementation. Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp 1–32
41.
go back to reference Yalcinkaya T, Brekelmans WAM, Geers MGD (2008) Bcc single crystal plasticity modeling and its experimental identification. Modelling Simul Mater Sci Eng 16:085007CrossRef Yalcinkaya T, Brekelmans WAM, Geers MGD (2008) Bcc single crystal plasticity modeling and its experimental identification. Modelling Simul Mater Sci Eng 16:085007CrossRef
42.
go back to reference Yalcinkaya T, Brekelmans WAM, Geers MGD (2011) Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J Mech Phys Solids 59:1–17MathSciNetCrossRefMATH Yalcinkaya T, Brekelmans WAM, Geers MGD (2011) Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J Mech Phys Solids 59:1–17MathSciNetCrossRefMATH
43.
go back to reference Yalcinkaya T, Brekelmans WAM, Geers MGD (2012) Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int J Solids Struct 49:2625–2636CrossRef Yalcinkaya T, Brekelmans WAM, Geers MGD (2012) Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int J Solids Struct 49:2625–2636CrossRef
44.
go back to reference Yalcinkaya T, Demirci A, Simonovski I, Ozdemir I (2017) Intrinsic and statistical size effects in microforming. AIP Conf Proc 1896:160013CrossRef Yalcinkaya T, Demirci A, Simonovski I, Ozdemir I (2017) Intrinsic and statistical size effects in microforming. AIP Conf Proc 1896:160013CrossRef
45.
go back to reference Yalcinkaya T, Demirci A, Simonovski I, Ozdemir I (2017) Micromechanical modelling of size effects in microforming. Procedia Eng 207:998–1003CrossRef Yalcinkaya T, Demirci A, Simonovski I, Ozdemir I (2017) Micromechanical modelling of size effects in microforming. Procedia Eng 207:998–1003CrossRef
46.
go back to reference Yalcinkaya T, Simonovski I, Ozdemir I (2016) Strain gradient polycrystal plasticity for micro-forming. AIP Conf Proc 1769(1):160003CrossRef Yalcinkaya T, Simonovski I, Ozdemir I (2016) Strain gradient polycrystal plasticity for micro-forming. AIP Conf Proc 1769(1):160003CrossRef
47.
go back to reference Zhang H, Dong X (2015) Physically based crystal plasticity FEM including geometrically necessary dislocations: numerical implementation and applications in micro-forming. Comput Mater Sci 110:308–320CrossRef Zhang H, Dong X (2015) Physically based crystal plasticity FEM including geometrically necessary dislocations: numerical implementation and applications in micro-forming. Comput Mater Sci 110:308–320CrossRef
48.
go back to reference Zhang H, Dong X (2016) Experimental and numerical studies of coupling size effects on material behaviors of polycrystalline metallic foils in microscale plastic deformation. Mat Sci Eng A-Struct 658:450–462CrossRef Zhang H, Dong X (2016) Experimental and numerical studies of coupling size effects on material behaviors of polycrystalline metallic foils in microscale plastic deformation. Mat Sci Eng A-Struct 658:450–462CrossRef
Metadata
Title
Micromechanical modeling of intrinsic and specimen size effects in microforming
Authors
T. Yalçinkaya
İ. Özdemir
I. Simonovski
Publication date
29-11-2017
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2018
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-017-1390-3

Other articles of this Issue 5/2018

International Journal of Material Forming 5/2018 Go to the issue

Premium Partners