Skip to main content
Top

2014 | OriginalPaper | Chapter

5. Microporous Organic Polymers for Carbon Dioxide Capture

Authors : Yali Luo, Bien Tan

Published in: Porous Materials for Carbon Dioxide Capture

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microporous organic polymers (MOPs) are a unique class of porous materials consisting solely of the light elements (C, H, O, N, etc.). A series of vivid characteristics of MOPs, such as high-specific surface area, good physicochemical stability, diverse pore dimensions, topologies, and chemical functionalities, make them suitable adsorbents for CO2 capture. In this chapter, MOPs are categorized into four classes according to the types of organic reactions and the chemical structures of the resulting materials: hypercrosslinked polymers (HCPs), covalent organic frameworks (COFs), polymers of intrinsic microporosity (PIMs), and conjugated microporous polymers (CMPs). For each type of the polymer network, the state-of-the-art development in the design, synthesis, characterization, and the CO2 sorption performance is reviewed. Strategies for controlling CO2 uptake capacity and adsorption enthalpy via manipulation of surface area, pore size, and functionality are discussed in detail. These studies would open up many new possibilities for the development of the novel solid sorbents targeting the CO2 capture process. It is expected that this chapter will not only summarize the main research activities in this field, but also find possible links between basic studies and practical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Johnson J (2004) Putting a lid on carbon dioxide–carbon sequestration, clean-coal research mark government response to climate-change threat. Chem Eng News 82:36–42 Johnson J (2004) Putting a lid on carbon dioxide–carbon sequestration, clean-coal research mark government response to climate-change threat. Chem Eng News 82:36–42
2.
go back to reference Wang QA, Luo JZ, Zhong ZY et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55MATH Wang QA, Luo JZ, Zhong ZY et al (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55MATH
3.
go back to reference D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Edit 49:6058–6082 D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Edit 49:6058–6082
4.
go back to reference Czaja AU, Trukhan N, Muller U (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38:1284–1293 Czaja AU, Trukhan N, Muller U (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38:1284–1293
5.
go back to reference McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35:675–683 McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35:675–683
6.
go back to reference Cooper AI (2009) Conjugated microporous polymers. Adv Mater 21:1291–1295 Cooper AI (2009) Conjugated microporous polymers. Adv Mater 21:1291–1295
7.
go back to reference Choi JH, Choi KM, Jeon HJ et al (2010) Acetylene gas mediated conjugated microporous polymers (ACMPs): first use of acetylene gas as a building unit. Macromolecules 43:5508–5511 Choi JH, Choi KM, Jeon HJ et al (2010) Acetylene gas mediated conjugated microporous polymers (ACMPs): first use of acetylene gas as a building unit. Macromolecules 43:5508–5511
8.
go back to reference El-Kaderi HM, Hunt JR, Mendoza-Cortes JL et al (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272 El-Kaderi HM, Hunt JR, Mendoza-Cortes JL et al (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272
9.
go back to reference Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883 Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883
10.
go back to reference Lee JY, Wood CD, Bradshaw D et al (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 2670–2672 Lee JY, Wood CD, Bradshaw D et al (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 2670–2672
11.
go back to reference Martin CF, Stockel E, Clowes R et al (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483 Martin CF, Stockel E, Clowes R et al (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483
12.
go back to reference Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review. React Funct Polym 66:768–779 Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review. React Funct Polym 66:768–779
13.
go back to reference Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Edit 47:3450–3453 Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Edit 47:3450–3453
14.
go back to reference Ben T, Ren H, Ma SQ et al (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Edit 48:9457–9460 Ben T, Ren H, Ma SQ et al (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Edit 48:9457–9460
15.
go back to reference Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471–484 Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471–484
16.
go back to reference Davankov VA, Tsyurupa MP (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13:27–42 Davankov VA, Tsyurupa MP (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13:27–42
17.
go back to reference Ahn JH, Jang JE, Oh CG et al (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in davankov-type hyper-cross-linked resins. Macromolecules 39:627–632 Ahn JH, Jang JE, Oh CG et al (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in davankov-type hyper-cross-linked resins. Macromolecules 39:627–632
18.
go back to reference Germain J, Hradil J, Frechet JMJ et al (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18:4430–4435 Germain J, Hradil J, Frechet JMJ et al (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18:4430–4435
19.
go back to reference Li B, Gong R, Luo Y et al (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7:10910–10916 Li B, Gong R, Luo Y et al (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7:10910–10916
20.
go back to reference Kaliva M, Armatas GS, Vamvakaki M (2012) Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 28:2690–2695 Kaliva M, Armatas GS, Vamvakaki M (2012) Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 28:2690–2695
21.
go back to reference Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877 Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877
22.
go back to reference Babarao R, Hu Z, Jiang J et al (2007) Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from monte carlo simulation. Langmuir 23:659–666 Babarao R, Hu Z, Jiang J et al (2007) Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from monte carlo simulation. Langmuir 23:659–666
23.
go back to reference Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J Phys Chem B 110:17776–17783 Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J Phys Chem B 110:17776–17783
24.
go back to reference Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421 Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421
25.
go back to reference Belmabkhout Y, Sayari A (2009) Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem Eng Sci 64:3729–3735 Belmabkhout Y, Sayari A (2009) Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem Eng Sci 64:3729–3735
26.
go back to reference Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49:1095–1101 Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49:1095–1101
27.
go back to reference Wood CD, Tan B, Trewin A et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048 Wood CD, Tan B, Trewin A et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048
28.
go back to reference Llewellyn PL, Bourrelly S, Serre C et al (2008) High uptakes of CO2 and CH4 in mesoporous metals-organic frameworks MIL-100 and MIL-101. Langmuir 24:7245–7250 Llewellyn PL, Bourrelly S, Serre C et al (2008) High uptakes of CO2 and CH4 in mesoporous metals-organic frameworks MIL-100 and MIL-101. Langmuir 24:7245–7250
29.
go back to reference Chaikittisilp W, Kubo M, Moteki T et al (2011) Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages. J Am Chem Soc 133:13832–13835 Chaikittisilp W, Kubo M, Moteki T et al (2011) Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages. J Am Chem Soc 133:13832–13835
30.
go back to reference Yuan S, White D, Mason A et al (2011) Porous organic polymers containing carborane for hydrogen storage. Int J Energy Res. doi:10.1002/er.1886 Yuan S, White D, Mason A et al (2011) Porous organic polymers containing carborane for hydrogen storage. Int J Energy Res. doi:10.​1002/​er.​1886
31.
go back to reference Schwab MG, Lennert A, Pahnke J et al (2011) Nanoporous copolymer networks through multiple Friedel-Crafts-alkylation-studies on hydrogen and methane storage. J Mater Chem 21:2131–2135 Schwab MG, Lennert A, Pahnke J et al (2011) Nanoporous copolymer networks through multiple Friedel-Crafts-alkylation-studies on hydrogen and methane storage. J Mater Chem 21:2131–2135
32.
go back to reference Luo Y, Zhang S, Ma Y et al (2013) Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym Chem 4:1126–1131 Luo Y, Zhang S, Ma Y et al (2013) Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym Chem 4:1126–1131
33.
go back to reference Li B, Gong R, Wang W et al (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44:2410–2414 Li B, Gong R, Wang W et al (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44:2410–2414
34.
go back to reference Dawson R, Stockel E, Holst JR et al (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245 Dawson R, Stockel E, Holst JR et al (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245
35.
go back to reference Dawson R, Stevens L, Drage TC et al (2012) Impact of water co-adsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134:10741–10744 Dawson R, Stevens L, Drage TC et al (2012) Impact of water co-adsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134:10741–10744
36.
go back to reference Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with −OH functional groups and high CO2 capture capacity. Chem Mater 23:1818–1824 Katsoulidis AP, Kanatzidis MG (2011) Phloroglucinol based microporous polymeric organic frameworks with −OH functional groups and high CO2 capture capacity. Chem Mater 23:1818–1824
37.
go back to reference Couck S, Denayer JFM, Baron GV et al (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327 Couck S, Denayer JFM, Baron GV et al (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327
38.
go back to reference Chen S, Zhang J, Wu T et al (2009) Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J Am Chem Soc 131:16027–16029 Chen S, Zhang J, Wu T et al (2009) Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J Am Chem Soc 131:16027–16029
39.
go back to reference Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2:1173–1177 Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2:1173–1177
40.
go back to reference Dawson R, Ratvijitvech T, Corker M et al (2012) Microporous copolymers for increased gas selectivity. Polym Chem 3:2034–2038 Dawson R, Ratvijitvech T, Corker M et al (2012) Microporous copolymers for increased gas selectivity. Polym Chem 3:2034–2038
41.
go back to reference Luo Y, Li B, Wang W et al (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24:5703–5707 Luo Y, Li B, Wang W et al (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24:5703–5707
42.
go back to reference Lim H, Cha MC, Chang JY (2012) Preparation of microporous polymers based on 1,3,5-triazine units showing high CO2 adsorption capacity. Macromol Chem Phys 213:1385–1390 Lim H, Cha MC, Chang JY (2012) Preparation of microporous polymers based on 1,3,5-triazine units showing high CO2 adsorption capacity. Macromol Chem Phys 213:1385–1390
43.
go back to reference Lim H, Cha MC, Chang JY (2012) Synthesis of microporous polymers by Friedel-Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification. Polym Chem 3:868–870 Lim H, Cha MC, Chang JY (2012) Synthesis of microporous polymers by Friedel-Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification. Polym Chem 3:868–870
44.
go back to reference Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568 Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568
45.
go back to reference Côté AP, Benin AI, Ockwig NW et al (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170 Côté AP, Benin AI, Ockwig NW et al (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170
46.
go back to reference Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022 Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022
47.
go back to reference Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999 Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999
48.
go back to reference Yang Q, Zhong C (2009) Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. Langmuir 25:2302–2308 Yang Q, Zhong C (2009) Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. Langmuir 25:2302–2308
49.
go back to reference Babarao R, Jiang J (2008) Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study. Energy Environ Sci 1:139–143 Babarao R, Jiang J (2008) Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study. Energy Environ Sci 1:139–143
50.
go back to reference Choi YJ, Choi JH, Choi KM et al (2011) Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach. J Mater Chem 21:1073–1078 Choi YJ, Choi JH, Choi KM et al (2011) Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach. J Mater Chem 21:1073–1078
51.
go back to reference Kahveci Z, Islamoglu T, Shar GA et al (2013) Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15:1524–1527 Kahveci Z, Islamoglu T, Shar GA et al (2013) Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15:1524–1527
52.
go back to reference Jackson KT, Rabbani MG, Reich TE et al (2011) Synthesis of highly porous borazine-linked polymers and their application to H2, CO2, and CH4 storage. Polym Chem 2:2775–2777 Jackson KT, Rabbani MG, Reich TE et al (2011) Synthesis of highly porous borazine-linked polymers and their application to H2, CO2, and CH4 storage. Polym Chem 2:2775–2777
53.
go back to reference Jackson KT, Reich TE, El-Kaderi HM (2012) Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun 48:8823–8825 Jackson KT, Reich TE, El-Kaderi HM (2012) Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun 48:8823–8825
54.
go back to reference Reich TE, Behera S, Jackson KT et al (2012) Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. J Mater Chem 22:13524–13528 Reich TE, Behera S, Jackson KT et al (2012) Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. J Mater Chem 22:13524–13528
55.
go back to reference Reich TE, Jackson KT, Li S et al (2011) Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. J Mater Chem 21:10629–10632 Reich TE, Jackson KT, Li S et al (2011) Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. J Mater Chem 21:10629–10632
56.
go back to reference Nagai A, Guo Z, Feng X et al (2011) Pore surface engineering in covalent organic frameworks. Nat Commun 2:536 Nagai A, Guo Z, Feng X et al (2011) Pore surface engineering in covalent organic frameworks. Nat Commun 2:536
57.
go back to reference Lan J, Cao D, Wang W et al (2010) Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano 4:4225–4237 Lan J, Cao D, Wang W et al (2010) Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano 4:4225–4237
58.
go back to reference Shultz AM, Farha OK, Hupp JT et al (2011) Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem Sci 2:686–689 Shultz AM, Farha OK, Hupp JT et al (2011) Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem Sci 2:686–689
59.
go back to reference Ding X, Chen L, Honsho Y et al (2011) An n-channel two-dimensional covalent organic framework. J Am Chem Soc 133:14510–14513 Ding X, Chen L, Honsho Y et al (2011) An n-channel two-dimensional covalent organic framework. J Am Chem Soc 133:14510–14513
60.
go back to reference Chen X, Addicoat MA, Irle S et al (2012) Control crystallinity and porosity of covalent organic frameworks through managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc 135:546–549 Chen X, Addicoat MA, Irle S et al (2012) Control crystallinity and porosity of covalent organic frameworks through managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc 135:546–549
61.
go back to reference Modak A, Nandi M, Mondal J et al (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250 Modak A, Nandi M, Mondal J et al (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250
62.
go back to reference Wang C, Zheng M, Lin W (2011) Asymmetric catalysis with chiral porous metal-organic frameworks: critical issues. J Phys Chem Lett 2:1701–1709 Wang C, Zheng M, Lin W (2011) Asymmetric catalysis with chiral porous metal-organic frameworks: critical issues. J Phys Chem Lett 2:1701–1709
63.
go back to reference Mastalerz M, Hauswald H-JS, Stoll R (2012) Metal-assisted salphen organic frameworks (MaSOFs) with high surface areas and narrow pore-size distribution. Chem Commun 48:130–132 Mastalerz M, Hauswald H-JS, Stoll R (2012) Metal-assisted salphen organic frameworks (MaSOFs) with high surface areas and narrow pore-size distribution. Chem Commun 48:130–132
64.
go back to reference Jin Y, Zhu Y, Zhang W (2013) Development of organic porous materials through schiff-base chemistry. CrystEngComm 15:1484–1499 Jin Y, Zhu Y, Zhang W (2013) Development of organic porous materials through schiff-base chemistry. CrystEngComm 15:1484–1499
65.
go back to reference Uribe-Romo FJ, Doonan CJ, Furukawa H et al (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–11481 Uribe-Romo FJ, Doonan CJ, Furukawa H et al (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–11481
66.
go back to reference Uribe-Romo FJ, Hunt JR, Furukawa H et al (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131:4570–4571 Uribe-Romo FJ, Hunt JR, Furukawa H et al (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131:4570–4571
67.
go back to reference Wan S, Gándara F, Asano A et al (2011) Covalent organic frameworks with high charge carrier mobility. Chem Mater 23:4094–4097 Wan S, Gándara F, Asano A et al (2011) Covalent organic frameworks with high charge carrier mobility. Chem Mater 23:4094–4097
68.
go back to reference Ding S-Y, Gao J, Wang Q et al (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki–miyaura coupling reaction. J Am Chem Soc 133:19816–19822 Ding S-Y, Gao J, Wang Q et al (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki–miyaura coupling reaction. J Am Chem Soc 133:19816–19822
69.
go back to reference Pandey P, Katsoulidis AP, Eryazici I et al (2010) Imine-linked microporous polymer organic frameworks. Chem Mater 22:4974–4979 Pandey P, Katsoulidis AP, Eryazici I et al (2010) Imine-linked microporous polymer organic frameworks. Chem Mater 22:4974–4979
70.
go back to reference Laybourn A, Dawson R, Clowes R et al (2012) Branching out with aminals: microporous organic polymers from difunctional monomers. Polym Chem 3:533–537 Laybourn A, Dawson R, Clowes R et al (2012) Branching out with aminals: microporous organic polymers from difunctional monomers. Polym Chem 3:533–537
71.
go back to reference Dawson R, Stockel E, Holst JR et al (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245 Dawson R, Stockel E, Holst JR et al (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245
72.
go back to reference Jiang S, Bacsa J, Wu X et al (2011) Selective gas sorption in a [2+3] ‘propeller’ cage crystal. Chem Commun 47:8919–8921 Jiang S, Bacsa J, Wu X et al (2011) Selective gas sorption in a [2+3] ‘propeller’ cage crystal. Chem Commun 47:8919–8921
73.
go back to reference Cheon YE, Suh MP (2009) Selective gas adsorption in a microporous metal-organic framework constructed of CoII 4 clusters. Chem Commun 0:2296–2298 Cheon YE, Suh MP (2009) Selective gas adsorption in a microporous metal-organic framework constructed of CoII 4 clusters. Chem Commun 0:2296–2298
74.
go back to reference Wang B, Cote AP, Furukawa H et al (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211 Wang B, Cote AP, Furukawa H et al (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211
75.
go back to reference Spitler EL, Giovino MR, White SL et al (2011) A mechanistic study of lewis acid-catalyzed covalent organic framework formation. Chem Sci 2:1588–1593 Spitler EL, Giovino MR, White SL et al (2011) A mechanistic study of lewis acid-catalyzed covalent organic framework formation. Chem Sci 2:1588–1593
76.
go back to reference Du Y, Mao K, Kamakoti P et al (2012) Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks. Chem Commun 48:4606–4608 Du Y, Mao K, Kamakoti P et al (2012) Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks. Chem Commun 48:4606–4608
77.
go back to reference Kandambeth S, Mallick A, Lukose B et al (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134:19524–19527 Kandambeth S, Mallick A, Lukose B et al (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134:19524–19527
78.
go back to reference Xu C, Hedin N (2013) Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J Mater Chem A 1:3406–3414 Xu C, Hedin N (2013) Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J Mater Chem A 1:3406–3414
79.
go back to reference Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23:1650–1653 Rabbani MG, El-Kaderi HM (2011) Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater 23:1650–1653
80.
go back to reference An J, Geib SJ, Rosi NL (2010) High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J Am Chem Soc 132:38–39 An J, Geib SJ, Rosi NL (2010) High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J Am Chem Soc 132:38–39
81.
go back to reference Demessence A, D’Alessandro DM, Foo ML et al (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786 Demessence A, D’Alessandro DM, Foo ML et al (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786
82.
go back to reference Panda T, Pachfule P, Chen Y et al (2011) Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem Commun 47:2011–2013 Panda T, Pachfule P, Chen Y et al (2011) Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem Commun 47:2011–2013
83.
go back to reference Ghanem BS, Hashem M, Harris KDM et al (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromolecules 43:5287–5294 Ghanem BS, Hashem M, Harris KDM et al (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromolecules 43:5287–5294
84.
go back to reference Mastalerz M, Schneider MW, Oppel IM et al (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Edit 50:1046–1051 Mastalerz M, Schneider MW, Oppel IM et al (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Edit 50:1046–1051
85.
go back to reference Vagin SI, Ott AK, Hoffmann SD et al (2009) Synthesis and properties of (triptycenedicarboxylatio) zinc coordination networks. Chem Eur J 15:5845–5853 Vagin SI, Ott AK, Hoffmann SD et al (2009) Synthesis and properties of (triptycenedicarboxylatio) zinc coordination networks. Chem Eur J 15:5845–5853
86.
go back to reference Chong JH, Ardakani SJ, Smith KJ et al (2009) Triptycene-based metal salphens—exploiting intrinsic molecular porosity for gas storage. Chem Eur J 15:11824–11828 Chong JH, Ardakani SJ, Smith KJ et al (2009) Triptycene-based metal salphens—exploiting intrinsic molecular porosity for gas storage. Chem Eur J 15:11824–11828
87.
go back to reference Rabbani MG, Reich TE, Kassab RM et al (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48:1141–1143 Rabbani MG, Reich TE, Kassab RM et al (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48:1141–1143
88.
go back to reference Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24:1511–1517 Rabbani MG, El-Kaderi HM (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24:1511–1517
89.
go back to reference Zhao Y-C, Cheng Q-Y, Zhou D et al (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22:11509–11514 Zhao Y-C, Cheng Q-Y, Zhou D et al (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22:11509–11514
90.
go back to reference Yu H, Tian M, Shen C et al (2013) Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym Chem 4:961–968 Yu H, Tian M, Shen C et al (2013) Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym Chem 4:961–968
91.
go back to reference Mohanty P, Kull LD, Landskron K (2011) Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat Commun 2:401–406 Mohanty P, Kull LD, Landskron K (2011) Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat Commun 2:401–406
92.
go back to reference Kuhn P, Forget A, Hartmann J et al (2009) Template-free tuning of nanopores in carbonaceous polymers through ionothermal synthesis. Adv Mater 21:897–901 Kuhn P, Forget A, Hartmann J et al (2009) Template-free tuning of nanopores in carbonaceous polymers through ionothermal synthesis. Adv Mater 21:897–901
93.
go back to reference Kuhn P, Thomas A, Antonietti M (2009) Toward tailorable porous organic polymer networks: a high-temperature dynamic polymerization scheme based on aromatic nitriles. Macromolecules 42:319–326 Kuhn P, Thomas A, Antonietti M (2009) Toward tailorable porous organic polymer networks: a high-temperature dynamic polymerization scheme based on aromatic nitriles. Macromolecules 42:319–326
94.
go back to reference Bojdys MJ, Jeromenok J, Thomas A et al (2010) Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv Mater 22:2202–2205 Bojdys MJ, Jeromenok J, Thomas A et al (2010) Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv Mater 22:2202–2205
95.
go back to reference Ren H, Ben T, Wang ES et al (2010) Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem Commun 46:291–293 Ren H, Ben T, Wang ES et al (2010) Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem Commun 46:291–293
96.
go back to reference Hug S, Tauchert ME, Li S et al (2012) A functional triazine framework based on n-heterocyclic building blocks. J Mater Chem 22:13956–13964 Hug S, Tauchert ME, Li S et al (2012) A functional triazine framework based on n-heterocyclic building blocks. J Mater Chem 22:13956–13964
97.
go back to reference Wang W, Ren H, Sun F et al (2012) Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. Dalton Trans 41:3933–3936 Wang W, Ren H, Sun F et al (2012) Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. Dalton Trans 41:3933–3936
98.
go back to reference Ren S, Bojdys MJ, Dawson R et al (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361 Ren S, Bojdys MJ, Dawson R et al (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361
99.
go back to reference Zhu X, Tian C, Mahurin SM et al (2012) A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 134:10478–10484 Zhu X, Tian C, Mahurin SM et al (2012) A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 134:10478–10484
101.
go back to reference McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43:5163–5176 McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43:5163–5176
102.
go back to reference Wu D, Xu F, Sun B et al (2012) Design and preparation of porous polymers. Chem Rev 2012:3959–4015 Wu D, Xu F, Sun B et al (2012) Design and preparation of porous polymers. Chem Rev 2012:3959–4015
103.
go back to reference McKeown NB, Makhseed S, Budd PM (2002) Phthalocyanine-based nanoporous network polymers. Chem Commun 2780–2781 McKeown NB, Makhseed S, Budd PM (2002) Phthalocyanine-based nanoporous network polymers. Chem Commun 2780–2781
104.
go back to reference McKeown NB, Hanif S, Msayib K et al (2002) Porphyrin-based nanoporous network polymers. Chem Commun 2782–2783 McKeown NB, Hanif S, Msayib K et al (2002) Porphyrin-based nanoporous network polymers. Chem Commun 2782–2783
105.
go back to reference Budd PM, Ghanem BS, Makhseed S et al (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun 230–231 Budd PM, Ghanem BS, Makhseed S et al (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun 230–231
106.
go back to reference Thomas S, Pinnau I, Du N et al (2009) Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. J Membr Sci 338:1–4 Thomas S, Pinnau I, Du N et al (2009) Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. J Membr Sci 338:1–4
107.
go back to reference Ahn J, Chung W-J, Pinnau I et al (2010) Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membr Sci 346:280–287 Ahn J, Chung W-J, Pinnau I et al (2010) Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membr Sci 346:280–287
108.
go back to reference Budd PM, McKeown NB, Ghanem BS et al (2008) Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J Membr Sci 325:851–860 Budd PM, McKeown NB, Ghanem BS et al (2008) Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J Membr Sci 325:851–860
109.
go back to reference Budd PM, Msayib KJ, Tattershall CE et al (2005) Gas separation membranes from polymers of intrinsic microporosity. J Membr Sci 251:263–269 Budd PM, Msayib KJ, Tattershall CE et al (2005) Gas separation membranes from polymers of intrinsic microporosity. J Membr Sci 251:263–269
110.
go back to reference Du N, Robertson GP, Pinnau I et al (2009) Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules 42:6023–6030 Du N, Robertson GP, Pinnau I et al (2009) Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules 42:6023–6030
111.
go back to reference Du N, Robertson GP, Song J et al (2009) High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties†. Macromolecules 42:6038–6043 Du N, Robertson GP, Song J et al (2009) High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties†. Macromolecules 42:6038–6043
112.
go back to reference Vogiatzis KD, Mavrandonakis A, Klopper W et al (2009) Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10:374–383 Vogiatzis KD, Mavrandonakis A, Klopper W et al (2009) Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10:374–383
113.
go back to reference Du N, Park HB, Robertson GP et al (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375 Du N, Park HB, Robertson GP et al (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375
114.
go back to reference Zulfiqar S, Karadas F, Park J et al (2011) Amidoximes: promising candidates for CO2 capture. Energy Environ Sci 4:4528–4531 Zulfiqar S, Karadas F, Park J et al (2011) Amidoximes: promising candidates for CO2 capture. Energy Environ Sci 4:4528–4531
115.
go back to reference Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48:9989–9991 Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48:9989–9991
116.
go back to reference Li FY, Xiao Y, Chung T-S et al (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45:1427–1437 Li FY, Xiao Y, Chung T-S et al (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45:1427–1437
117.
go back to reference Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41:2880–2885 Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41:2880–2885
118.
go back to reference Weber J, Su Q, Antonietti M et al (2007) Exploring polymers of intrinsic microporosity—microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28:1871–1876 Weber J, Su Q, Antonietti M et al (2007) Exploring polymers of intrinsic microporosity—microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28:1871–1876
119.
go back to reference Ritter N, Antonietti M, Thomas A et al (2009) Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity. Macromolecules 42:8017–8020 Ritter N, Antonietti M, Thomas A et al (2009) Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity. Macromolecules 42:8017–8020
120.
go back to reference Ritter N, Senkovska I, Kaskel S et al (2011) Towards chiral microporous soluble polymers—binaphthalene-based polyimides. Macromol Rapid Commun 32:438–443 Ritter N, Senkovska I, Kaskel S et al (2011) Towards chiral microporous soluble polymers—binaphthalene-based polyimides. Macromol Rapid Commun 32:438–443
121.
go back to reference Ritter N, Senkovska I, Kaskel S et al (2011) Intrinsically microporous poly(imide)s: structure−porosity relationship studied by gas sorption and X-ray scattering. Macromolecules 44:2025–2033 Ritter N, Senkovska I, Kaskel S et al (2011) Intrinsically microporous poly(imide)s: structure−porosity relationship studied by gas sorption and X-ray scattering. Macromolecules 44:2025–2033
122.
go back to reference Wang Z, Zhang B, Yu H et al (2010) Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chem Commun 46:7730–7732 Wang Z, Zhang B, Yu H et al (2010) Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chem Commun 46:7730–7732
123.
go back to reference Farha OK, Spokoyny AM, Hauser BG et al (2009) Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem Mater 21:3033–3035 Farha OK, Spokoyny AM, Hauser BG et al (2009) Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem Mater 21:3033–3035
124.
go back to reference Wang Z, Zhang B, Yu H et al (2011) Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter 7:5723–5730 Wang Z, Zhang B, Yu H et al (2011) Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter 7:5723–5730
125.
go back to reference Rao KV, Haldar R, Kulkarni C et al (2012) Perylene based porous polyimides: tunable, high surface area with tetrahedral and pyramidal monomers. Chem Mater 24:969–971 Rao KV, Haldar R, Kulkarni C et al (2012) Perylene based porous polyimides: tunable, high surface area with tetrahedral and pyramidal monomers. Chem Mater 24:969–971
126.
go back to reference Farha OK, Bae Y-S, Hauser BG et al (2010) Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem Commun 46:1056–1058 Farha OK, Bae Y-S, Hauser BG et al (2010) Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem Commun 46:1056–1058
127.
go back to reference Luo Y, Li B, Liang L et al (2011) Synthesis of cost-effective porous polyimides and their gas storage properties. Chem Commun 47:7704–7706 Luo Y, Li B, Liang L et al (2011) Synthesis of cost-effective porous polyimides and their gas storage properties. Chem Commun 47:7704–7706
128.
go back to reference Liebl MR, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25:970–980 Liebl MR, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25:970–980
129.
go back to reference Trewin A (2010) Predicting crystalline polyamic acids as precursors to porous polyimides. CrystEngComm 12:2315–2317 Trewin A (2010) Predicting crystalline polyamic acids as precursors to porous polyimides. CrystEngComm 12:2315–2317
130.
go back to reference Zeng S, Guo L, Cui F et al (2010) Template-free synthesis of crystalline polyimide spheres with radiate branches. Mater Lett 64:625–627 Zeng S, Guo L, Cui F et al (2010) Template-free synthesis of crystalline polyimide spheres with radiate branches. Mater Lett 64:625–627
131.
go back to reference Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563 Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563
132.
go back to reference Xiang ZH, Cao DP (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33:1184–1190 Xiang ZH, Cao DP (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33:1184–1190
133.
go back to reference Chaikittisilp W, Sugawara A, Shimojima A et al (2010) Microporous hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a singular building unit. Chem Mater 22:4841–4843 Chaikittisilp W, Sugawara A, Shimojima A et al (2010) Microporous hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a singular building unit. Chem Mater 22:4841–4843
134.
go back to reference Kassab R, Jackson K, El-Kadri O et al (2011) Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications. Res Chem Intermed 37:747–757 Kassab R, Jackson K, El-Kadri O et al (2011) Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications. Res Chem Intermed 37:747–757
135.
go back to reference Zhang Q, Zhang S, Li S (2012) Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 45:2981–2988 Zhang Q, Zhang S, Li S (2012) Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 45:2981–2988
136.
go back to reference Schmidt J, Werner M, Thomas A (2009) Conjugated microporous polymer networks via yamamoto polymerization. Macromolecules 42:4426–4429 Schmidt J, Werner M, Thomas A (2009) Conjugated microporous polymer networks via yamamoto polymerization. Macromolecules 42:4426–4429
137.
go back to reference Ren H, Ben T, Sun F et al (2011) Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem 21:10348–10353 Ren H, Ben T, Sun F et al (2011) Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem 21:10348–10353
138.
go back to reference Yuan Y, Sun F, Ren H et al (2011) Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J Mater Chem 21:13498–13502 Yuan Y, Sun F, Ren H et al (2011) Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J Mater Chem 21:13498–13502
139.
go back to reference Jing X, Sun F, Ren H et al (2013) Targeted synthesis of micro-mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Microporous Mesoporous Mater 165:92–98 Jing X, Sun F, Ren H et al (2013) Targeted synthesis of micro-mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Microporous Mesoporous Mater 165:92–98
140.
go back to reference Brandt J, Schmidt J, Thomas A et al (2011) Tunable absorption and emission wavelength in conjugated microporous polymers by copolymerization. Polym Chem 2:1950–1952 Brandt J, Schmidt J, Thomas A et al (2011) Tunable absorption and emission wavelength in conjugated microporous polymers by copolymerization. Polym Chem 2:1950–1952
141.
go back to reference Xu Y, Nagai A, Jiang D (2013) Core-shell conjugated microporous polymers: a new strategy for exploring color-tunable and -controllable light emissions. Chem Commun 49:1591–1593 Xu Y, Nagai A, Jiang D (2013) Core-shell conjugated microporous polymers: a new strategy for exploring color-tunable and -controllable light emissions. Chem Commun 49:1591–1593
142.
go back to reference Chen L, Honsho Y, Seki S et al (2010) Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc 132:6742–6748 Chen L, Honsho Y, Seki S et al (2010) Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc 132:6742–6748
143.
go back to reference Xiao D, Li Y, Liu L et al (2012) Two-photon fluorescent microporous bithiophene polymer via suzuki cross-coupling. Chem Commun 48:9519–9521 Xiao D, Li Y, Liu L et al (2012) Two-photon fluorescent microporous bithiophene polymer via suzuki cross-coupling. Chem Commun 48:9519–9521
144.
go back to reference Chen Q, Luo M, Wang T et al (2011) Porous organic polymers based on propeller-like hexaphenylbenzene building units. Macromolecules 44:5573–5577 Chen Q, Luo M, Wang T et al (2011) Porous organic polymers based on propeller-like hexaphenylbenzene building units. Macromolecules 44:5573–5577
145.
go back to reference Chen Q, Wang J-X, Yang F et al (2011) Tetraphenylethylene-based fluorescent porous organic polymers: preparation, gas sorption properties and photoluminescence properties. J Mater Chem 21:13554–13560 Chen Q, Wang J-X, Yang F et al (2011) Tetraphenylethylene-based fluorescent porous organic polymers: preparation, gas sorption properties and photoluminescence properties. J Mater Chem 21:13554–13560
146.
go back to reference Dawson R, Laybourn A, Clowes R et al (2009) Functionalized conjugated microporous polymers. Macromolecules 42:8809–8816 Dawson R, Laybourn A, Clowes R et al (2009) Functionalized conjugated microporous polymers. Macromolecules 42:8809–8816
147.
go back to reference Dawson R, Laybourn A, Khimyak YZ et al (2010) High surface area conjugated microporous polymers: the importance of reaction solvent choice. Macromolecules 43:8524–8530 Dawson R, Laybourn A, Khimyak YZ et al (2010) High surface area conjugated microporous polymers: the importance of reaction solvent choice. Macromolecules 43:8524–8530
148.
go back to reference Jiang JX, Laybourn A, Clowes R et al (2010) High surface area contorted conjugated microporous polymers based on spiro-bipropylenedioxythiophene. Macromolecules 43:7577–7582 Jiang JX, Laybourn A, Clowes R et al (2010) High surface area contorted conjugated microporous polymers based on spiro-bipropylenedioxythiophene. Macromolecules 43:7577–7582
149.
go back to reference Jiang JX, Trewin A, Su FB et al (2009) Microporous poly(tri(4-ethynylphenyl)amine) networks: Synthesis, properties, and atomistic simulation. Macromolecules 42:2658–2666 Jiang JX, Trewin A, Su FB et al (2009) Microporous poly(tri(4-ethynylphenyl)amine) networks: Synthesis, properties, and atomistic simulation. Macromolecules 42:2658–2666
150.
go back to reference Jiang J-X, Su F, Trewin A et al (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130:7710–7720 Jiang J-X, Su F, Trewin A et al (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130:7710–7720
151.
go back to reference Morisaki Y, Gon M, Tsuji Y et al (2011) Stacked 1,3,5-tris[(2,5-dimethylphenyl)-ethynyl]benzenes: dimer and conjugated microporous polymer. Tetrahedron Lett 52:5504–5507 Morisaki Y, Gon M, Tsuji Y et al (2011) Stacked 1,3,5-tris[(2,5-dimethylphenyl)-ethynyl]benzenes: dimer and conjugated microporous polymer. Tetrahedron Lett 52:5504–5507
152.
go back to reference Stockel E, Wu XF, Trewin A et al (2009) High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem Commun 212–214 Stockel E, Wu XF, Trewin A et al (2009) High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem Commun 212–214
153.
go back to reference Xia J, Yuan S, Wang Z et al (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules 43:3325–3330 Xia J, Yuan S, Wang Z et al (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules 43:3325–3330
154.
go back to reference Yuan S, Dorney B, White D et al (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46:4547–4549 Yuan S, Dorney B, White D et al (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46:4547–4549
155.
go back to reference Yuan S, Kirklin S, Dorney B et al (2009) Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 42:1554–1559 Yuan S, Kirklin S, Dorney B et al (2009) Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 42:1554–1559
156.
go back to reference Yuan SW, White D, Mason A et al (2012) Improving hydrogen adsorption enthalpy through coordinatively unsaturated cobalt in porous polymers. Macromol Rapid Commun 33:407–413 Yuan SW, White D, Mason A et al (2012) Improving hydrogen adsorption enthalpy through coordinatively unsaturated cobalt in porous polymers. Macromol Rapid Commun 33:407–413
157.
go back to reference Holst JR, Stöckel E, Adams DJ et al (2010) High surface area networks from tetrahedral monomers: metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 43:8531–8538 Holst JR, Stöckel E, Adams DJ et al (2010) High surface area networks from tetrahedral monomers: metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 43:8531–8538
158.
go back to reference Lu WG, Yuan DQ, Zhao D et al (2010) Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem Mater 22:5964–5972 Lu WG, Yuan DQ, Zhao D et al (2010) Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem Mater 22:5964–5972
159.
go back to reference Ben T, Pei C, Zhang D et al (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4:3991–3999 Ben T, Pei C, Zhang D et al (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4:3991–3999
160.
go back to reference Yuan D, Lu W, Zhao D et al (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23:3723–3725 Yuan D, Lu W, Zhao D et al (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23:3723–3725
161.
go back to reference Babarao R, Dai S, Jiang D (2011) Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Langmuir 27:3451–3460 Babarao R, Dai S, Jiang D (2011) Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Langmuir 27:3451–3460
162.
go back to reference Lu W, Yuan D, Sculley J et al (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129 Lu W, Yuan D, Sculley J et al (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129
163.
go back to reference Konstas K, Taylor JW, Thornton AW et al (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Edit 51:6639–6642 Konstas K, Taylor JW, Thornton AW et al (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Edit 51:6639–6642
164.
go back to reference Xiang ZH, Cao DP, Wang WC et al (2012) Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage. J Phys Chem C 116:5974–5980 Xiang ZH, Cao DP, Wang WC et al (2012) Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage. J Phys Chem C 116:5974–5980
165.
go back to reference Ma H, Ren H, Zou X et al (2013) Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. J Mater Chem A 1:752–758 Ma H, Ren H, Zou X et al (2013) Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. J Mater Chem A 1:752–758
166.
go back to reference Kiskan B, Antonietti M, Weber J (2012) Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 45:1356–1361 Kiskan B, Antonietti M, Weber J (2012) Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 45:1356–1361
167.
go back to reference McDonald TM, D’Alessandro DM, Krishna R et al (2011) Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2:2022–2028 McDonald TM, D’Alessandro DM, Krishna R et al (2011) Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2:2022–2028
168.
go back to reference Lu W, Sculley JP, Yuan D et al (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Edit 51:7480–7484 Lu W, Sculley JP, Yuan D et al (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Edit 51:7480–7484
169.
go back to reference Garibay SJ, Weston MH, Mondloch JE et al (2013) Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm 15:1515–1519 Garibay SJ, Weston MH, Mondloch JE et al (2013) Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm 15:1515–1519
170.
go back to reference Sun L, Liang Z, Yu J et al (2013) Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by heck coupling reaction. Polym Chem 4:1932–1938 Sun L, Liang Z, Yu J et al (2013) Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by heck coupling reaction. Polym Chem 4:1932–1938
171.
go back to reference Ren S, Dawson R, Laybourn A et al (2012) Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polym Chem 3:928–934 Ren S, Dawson R, Laybourn A et al (2012) Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polym Chem 3:928–934
172.
go back to reference Wang Z, Yuan S, Mason A et al (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45:7413–7419 Wang Z, Yuan S, Mason A et al (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45:7413–7419
173.
go back to reference Pachfule P, Dhavale VM, Kandambeth S et al (2013) Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen. Chem Eur J 19:974–980 Pachfule P, Dhavale VM, Kandambeth S et al (2013) Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen. Chem Eur J 19:974–980
174.
go back to reference Patel HA, Karadas F, Canlier A et al (2012) High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J Mater Chem 22:8431–8437 Patel HA, Karadas F, Canlier A et al (2012) High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J Mater Chem 22:8431–8437
175.
go back to reference Zhang XJ, Bian N, Mao LJ et al (2012) Porous polybenzimidazoles via template-free suzuki coupling polymerization: preparation, porosity, and heterogeneous catalytic activity in knoevenagel condensation reactions. Macromol Chem Phys 213:1575–1581 Zhang XJ, Bian N, Mao LJ et al (2012) Porous polybenzimidazoles via template-free suzuki coupling polymerization: preparation, porosity, and heterogeneous catalytic activity in knoevenagel condensation reactions. Macromol Chem Phys 213:1575–1581
176.
go back to reference Chen Q, Luo M, Hammershøj P et al (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134:6084–6087 Chen Q, Luo M, Hammershøj P et al (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134:6084–6087
177.
go back to reference Jeon HJ, Choi JH, Lee Y et al (2012) Highly selective CO2-capturing polymeric organic network structures. Adv Energy Mater 2:225–228 Jeon HJ, Choi JH, Lee Y et al (2012) Highly selective CO2-capturing polymeric organic network structures. Adv Energy Mater 2:225–228
Metadata
Title
Microporous Organic Polymers for Carbon Dioxide Capture
Authors
Yali Luo
Bien Tan
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54646-4_5