Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2012

01-11-2012 | Research Paper

Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot

Authors: Anthi Liati, Alexander Spiteri, Panayotis Dimopoulos Eggenschwiler, Nina Vogel-Schäuble

Published in: Journal of Nanoparticle Research | Issue 11/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Investigation of soot and ash particulate matter deposited in diesel particulate filters (DPFs) operating with biofuel (B100) and diesel (pure diesel: B0 and diesel80/biofuel20 blend: B20) by means of optical microscopy, scanning electron microscopy, and high resolution transmission electron microscopy (HRTEM) reveals the following: the rapeseed methyl ester biofuel used for this study contributes to ash production, mainly of Ca–S– and P-bearing compounds ranging in size between 50 and 300 nm. Smaller ash particles are less common and build aggregates. Ash is deposited on the inlet DPF surface, the inlet channel walls, and in B100-DPF at the plugged ends of inlet channels. The presence of Fe–Cr–Ni fragments, down to tens of nanometers in size within the ash is attributed to engine wear. Pt particles (50–400 nm large) within the ash indicate that the diesel oxidation catalyst (DOC) upstream of the DPF shows aging effects. Radial cracks on the coating layer of the DOC confirm this assumption. The B100-DPF contains significantly less soot than B20 and B0. Based on the generally accepted view that soot reactivity correlates with the nanostructure of its primary particles, the length and curvature of graphene sheets from biofuel- and diesel-derived soot were measured and computed on the basis of HRTEM images. The results show that biofuel-derived soot can be more easily oxidized than diesel soot, not only during early formation but also during and after considerable particle growth. Differences in the graphene sheet separation distance, degree of crystalline order and size of primary soot particles between the two fuel types are in line with this inference.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271CrossRef Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271CrossRef
go back to reference Bensaid S, Marchisio DI, Russo N, Fino D (2009) Experimental investigation of soot deposited in diesel particulate filters. Catal Today 147:S295–S300CrossRef Bensaid S, Marchisio DI, Russo N, Fino D (2009) Experimental investigation of soot deposited in diesel particulate filters. Catal Today 147:S295–S300CrossRef
go back to reference Boehman AL, Song J, Alam M (2005) Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energy Fuels 19:1857–1864CrossRef Boehman AL, Song J, Alam M (2005) Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energy Fuels 19:1857–1864CrossRef
go back to reference Britton N, Sutton M, Otterholm B, Tengstrom P, Frennfelt C, Walker A, Murray I (2004) Investigations into lubricant blocking of diesel particulate filters. SAE Technical Paper 2004-01-3013 Britton N, Sutton M, Otterholm B, Tengstrom P, Frennfelt C, Walker A, Murray I (2004) Investigations into lubricant blocking of diesel particulate filters. SAE Technical Paper 2004-01-3013
go back to reference Cataldo F (2002) The impact of fullerene-like concept in carbon black science. Carbon 40:157–162CrossRef Cataldo F (2002) The impact of fullerene-like concept in carbon black science. Carbon 40:157–162CrossRef
go back to reference Hays MD, Vander Wal RL (2007) Heterogeneous soot nanostructure in atmospheric and combustion source aerosols. Energy Fuels 21:801–811CrossRef Hays MD, Vander Wal RL (2007) Heterogeneous soot nanostructure in atmospheric and combustion source aerosols. Energy Fuels 21:801–811CrossRef
go back to reference Jung H, Kittelson DB, Zachariah MR (2006) Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation. Environ Sci Technol 40(16):4949–4955CrossRef Jung H, Kittelson DB, Zachariah MR (2006) Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation. Environ Sci Technol 40(16):4949–4955CrossRef
go back to reference Kim DH, Wang CH (2007) HRTEM Study of diesel soot collected from diesel particulate filters. Carbon 45:70–77CrossRef Kim DH, Wang CH (2007) HRTEM Study of diesel soot collected from diesel particulate filters. Carbon 45:70–77CrossRef
go back to reference Knauer M, Schuster ME, Su D, Schlögl R, Niessner R, Ivleva NP (2009) Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy. J Phys Chem A 113:13871–13880CrossRef Knauer M, Schuster ME, Su D, Schlögl R, Niessner R, Ivleva NP (2009) Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy. J Phys Chem A 113:13871–13880CrossRef
go back to reference Knothe G (2008) ‘Designer’ biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRef Knothe G (2008) ‘Designer’ biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRef
go back to reference Lamharess N, Millet CN, Starck L, Jeudy E, Lavy J, Da Costa P (2011) Catalysed diesel particulate filter: study of the reactivity of soot arising from biodiesel combustion. Catal Today 176:219–224CrossRef Lamharess N, Millet CN, Starck L, Jeudy E, Lavy J, Da Costa P (2011) Catalysed diesel particulate filter: study of the reactivity of soot arising from biodiesel combustion. Catal Today 176:219–224CrossRef
go back to reference Lapuerta M, Armas O, Rodríguez-Fernández J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223CrossRef Lapuerta M, Armas O, Rodríguez-Fernández J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223CrossRef
go back to reference Liati A, Dimopoulos Eggenschwiler P (2010) Characterisation of particulate matter deposited in diesel particulate filters: visual and analytical approach in macro-, micro- and nano-scales. Combust Flame 157:1658–1670CrossRef Liati A, Dimopoulos Eggenschwiler P (2010) Characterisation of particulate matter deposited in diesel particulate filters: visual and analytical approach in macro-, micro- and nano-scales. Combust Flame 157:1658–1670CrossRef
go back to reference Liati A, Dimopoulos Eggenschwiler P, Czerwinski J, Bonsack P, Hermle S (2011) Comparative studies of particles deposited in diesel particulate filters operating with biofuel, diesel fuel and fuel blends. SAE Technical Paper 2011-24-0102 Liati A, Dimopoulos Eggenschwiler P, Czerwinski J, Bonsack P, Hermle S (2011) Comparative studies of particles deposited in diesel particulate filters operating with biofuel, diesel fuel and fuel blends. SAE Technical Paper 2011-24-0102
go back to reference Liati A, Dimopoulos Eggenschwiller P, Müller Gubler E, Schreiber D, Aguirre M (2012) Investigation of diesel ash particulate matter: a scanning electron microscope and transmission electron microscope study. Atmos Environ 49:391–402CrossRef Liati A, Dimopoulos Eggenschwiller P, Müller Gubler E, Schreiber D, Aguirre M (2012) Investigation of diesel ash particulate matter: a scanning electron microscope and transmission electron microscope study. Atmos Environ 49:391–402CrossRef
go back to reference Müller JO, Su DS, Jentoft RE, Kröhnert J, Jentoft FC, Schlögl R (2005) Morphology-controlled reactivity of carbonaceous materials towards oxidation. Catal Today 102(103):259–265CrossRef Müller JO, Su DS, Jentoft RE, Kröhnert J, Jentoft FC, Schlögl R (2005) Morphology-controlled reactivity of carbonaceous materials towards oxidation. Catal Today 102(103):259–265CrossRef
go back to reference Müller JO, Su DS, Jentoft RE, Wild U, Schlögl R (2006) Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate. Environ Sci Technol 40:1231–1236CrossRef Müller JO, Su DS, Jentoft RE, Wild U, Schlögl R (2006) Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate. Environ Sci Technol 40:1231–1236CrossRef
go back to reference Müller JO, Su DS, Wild U, Schlögl R (2007) Bulk and surface structural investigations of diesel engine soot and carbon black. Phys Chem Chem Phys 9:4018–4025CrossRef Müller JO, Su DS, Wild U, Schlögl R (2007) Bulk and surface structural investigations of diesel engine soot and carbon black. Phys Chem Chem Phys 9:4018–4025CrossRef
go back to reference Nishi K, Korematsu K, Tanaka J (2004) Potential of rapeseed oil as diesel engine fuel. SAE Technical Paper 2004-01-1858 Nishi K, Korematsu K, Tanaka J (2004) Potential of rapeseed oil as diesel engine fuel. SAE Technical Paper 2004-01-1858
go back to reference Rakopoulos CD, Rakopoulos DC, Hountalas DT, Giakoumis EG, Andritsakis EC (2008) Performance and emissions of bus engine using blends of diesel fuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstocks. Fuel 87:147–157CrossRef Rakopoulos CD, Rakopoulos DC, Hountalas DT, Giakoumis EG, Andritsakis EC (2008) Performance and emissions of bus engine using blends of diesel fuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstocks. Fuel 87:147–157CrossRef
go back to reference Sappok A, Wong V (2010) Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control. SAE Int J Fuels Lubr 3:380–396 Sappok A, Wong V (2010) Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control. SAE Int J Fuels Lubr 3:380–396
go back to reference Schreiber D, Forss A M, Mohr M and Dimopoulos P (2007) Particle characterisation of modern CNG, gasoline and diesel passenger cars. SAE (Society of Automotive Engineers) Paper 2007-24-0123, Italy Schreiber D, Forss A M, Mohr M and Dimopoulos P (2007) Particle characterisation of modern CNG, gasoline and diesel passenger cars. SAE (Society of Automotive Engineers) Paper 2007-24-0123, Italy
go back to reference Schuster ME, Hävecker M, Arrigo R, Blume R, Knauer M, Ivleva NP, Su DS, Niessner R, Schlögl R (2011) Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI. J Phys Chem A 115:2568–2580CrossRef Schuster ME, Hävecker M, Arrigo R, Blume R, Knauer M, Ivleva NP, Su DS, Niessner R, Schlögl R (2011) Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI. J Phys Chem A 115:2568–2580CrossRef
go back to reference Song J, Alam AL, Boehman U, Kim U (2006) Examination of the oxidation behavior of biodiesel soot. Combust Flame 146:589–604CrossRef Song J, Alam AL, Boehman U, Kim U (2006) Examination of the oxidation behavior of biodiesel soot. Combust Flame 146:589–604CrossRef
go back to reference Song J, Alam M, Boehman AL (2007) Impact of alternative fuels on soot properties and DPF regeneration. Combust Sci Technol 179:1991–2037CrossRef Song J, Alam M, Boehman AL (2007) Impact of alternative fuels on soot properties and DPF regeneration. Combust Sci Technol 179:1991–2037CrossRef
go back to reference Su DS, Jentoft RE, Müller JO, Jentoft RE, Rothe D, Jacob E, Schlögl R (2004a) Fullerene-like soot from Euro-IV diesel engine: consequences for catalytic automotive pollution control. Top Catal 30(31):241–245CrossRef Su DS, Jentoft RE, Müller JO, Jentoft RE, Rothe D, Jacob E, Schlögl R (2004a) Fullerene-like soot from Euro-IV diesel engine: consequences for catalytic automotive pollution control. Top Catal 30(31):241–245CrossRef
go back to reference Su DS, Jentoft RE, Müller JO, Rothe D, Jacob E, Simpson CD et al (2004b) Microstructure and oxidation behaviour of Euro IV diesel engine soot: a comparative study with synthetic model soot substances. Catal Today 90:127–132CrossRef Su DS, Jentoft RE, Müller JO, Rothe D, Jacob E, Simpson CD et al (2004b) Microstructure and oxidation behaviour of Euro IV diesel engine soot: a comparative study with synthetic model soot substances. Catal Today 90:127–132CrossRef
go back to reference Tsolakis A, Megaritis A, Wyszynski ML, Theinno K (2007) Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy 32:2072–2080CrossRef Tsolakis A, Megaritis A, Wyszynski ML, Theinno K (2007) Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy 32:2072–2080CrossRef
go back to reference Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B 70:2–15CrossRef Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B 70:2–15CrossRef
go back to reference Vaaraslahti K, Keskinen J, Giechaskiel B, Solla A, Murtonen T, Vesala H (2005) Effect of lubricant on the formation of heavy-duty diesel exhaust nanoparticles. Environ Sci Technol 39:8497–8504CrossRef Vaaraslahti K, Keskinen J, Giechaskiel B, Solla A, Murtonen T, Vesala H (2005) Effect of lubricant on the formation of heavy-duty diesel exhaust nanoparticles. Environ Sci Technol 39:8497–8504CrossRef
go back to reference Vander Wal RL, Tomasek AJ, Pamphlet MI, Taylor CD, Thompson WK (2004) Analysis of HRTEM images for carbon nanostructure quantification. J Nanopart Res 6:555–568CrossRef Vander Wal RL, Tomasek AJ, Pamphlet MI, Taylor CD, Thompson WK (2004) Analysis of HRTEM images for carbon nanostructure quantification. J Nanopart Res 6:555–568CrossRef
go back to reference Vander Wal RL, Bryg VM, Hays MD (2010) Fingerprinting soot (towards source identification): physical structure and chemical composition. Aerosol Sci 41:108–117CrossRef Vander Wal RL, Bryg VM, Hays MD (2010) Fingerprinting soot (towards source identification): physical structure and chemical composition. Aerosol Sci 41:108–117CrossRef
go back to reference Wang WG, Lyons DW, Clark NN, Gautam M, Norton PM (2000) Emissions from nine heavy trucks fuelled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34(6):933–939CrossRef Wang WG, Lyons DW, Clark NN, Gautam M, Norton PM (2000) Emissions from nine heavy trucks fuelled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34(6):933–939CrossRef
go back to reference Watson SAG (2010) Lubricant-derived ash—in engine sources and opportunities for reduction. PhD Thesis, Massachusetts Institute of Technology, 235 pp Watson SAG (2010) Lubricant-derived ash—in engine sources and opportunities for reduction. PhD Thesis, Massachusetts Institute of Technology, 235 pp
go back to reference Wu F, Wang J, Chen W, Shuai S (2008) Effects of different biodiesels and their blends with oxygenated additives on emissions from a diesel engine. SAE Technical Paper 2008-01-1812 Wu F, Wang J, Chen W, Shuai S (2008) Effects of different biodiesels and their blends with oxygenated additives on emissions from a diesel engine. SAE Technical Paper 2008-01-1812
go back to reference Yehliu K, Vander Wal RL, Boehman AL (2011) Development of an HRTEM image analysis method to quantify carbon nanostructure. Combust Flame 158:1837–1851CrossRef Yehliu K, Vander Wal RL, Boehman AL (2011) Development of an HRTEM image analysis method to quantify carbon nanostructure. Combust Flame 158:1837–1851CrossRef
go back to reference Yezerets A, Currier NW, Eadler HA, Suresh A, Madden PF (2003) Investigation of the oxidation behavior of diesel particulate matter. Catal Today 88:17–25CrossRef Yezerets A, Currier NW, Eadler HA, Suresh A, Madden PF (2003) Investigation of the oxidation behavior of diesel particulate matter. Catal Today 88:17–25CrossRef
go back to reference Zabetta E, Hupa M, Niemi S (2006) Bio-derived fuels may ease the regeneration of diesel particulate traps. Fuel 85:2666–2670CrossRef Zabetta E, Hupa M, Niemi S (2006) Bio-derived fuels may ease the regeneration of diesel particulate traps. Fuel 85:2666–2670CrossRef
go back to reference Zhu W, Miser DE, Geoffrey Chan W, Hajaligol MR (2004) Characterisation of combustion fullerene soot, C60, and mixed fullerene. Carbon 42:1463–1471CrossRef Zhu W, Miser DE, Geoffrey Chan W, Hajaligol MR (2004) Characterisation of combustion fullerene soot, C60, and mixed fullerene. Carbon 42:1463–1471CrossRef
Metadata
Title
Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot
Authors
Anthi Liati
Alexander Spiteri
Panayotis Dimopoulos Eggenschwiler
Nina Vogel-Schäuble
Publication date
01-11-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1224-7

Other articles of this Issue 11/2012

Journal of Nanoparticle Research 11/2012 Go to the issue

Premium Partners