Skip to main content
Top
Published in: Journal of Materials Science 10/2017

30-01-2017 | Original Paper

Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys

Authors: Shuiyuan Yang, Fan Zhang, Jialin Wu, Jinbin Zhang, Cuiping Wang, Xingjun Liu

Published in: Journal of Materials Science | Issue 10/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the Cr was added into Cu–Al–Mn alloys for replacing Cu and Mn, and the microstructure, martensitic transformation, stress–strain behavior, superelasticity and shape memory effect of quaternary Cu–Al–Mn–Cr shape memory alloys were investigated. All the studied alloys exhibit a mixed microstructure consisted of dominant L21 parent, small amounts of A2(Cr) and 2H(γ1′) martensite, as well as a reversible martensitic transformation. Although the alloys are main L21 parent before deformation, partial stress-induced 2H(γ1′) martensite can be stabilized and retained after unloading. Therefore, the same alloy under a certain deformation temperature not only exhibits superelasticity property during deformation, but also the deformed alloy also shows shape memory effect when heated. The results further show that Cu–12.8Al–7.5Mn–2.5Cr alloy has a good superelasticity strain of 2.9% as well as a shape memory effect of 1.5%. Cu–12.7Al–6.9Mn–1.8Cr alloy possesses much the best superelasticity strain close to 5.0% under a pre-deformation of 10% and a shape memory effect of 2.0%. The best shape memory effect up to 2.5% with 10% of pre-deformation and a superelasticity strain of 2.8% are obtained in Cu–12.5Al–5.8Mn–4.1Cr alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge
2.
go back to reference Otsuka K, Shimizu K (1986) Pseudoelasticity and shape memory effects in alloys. Int Met Rev 31:93–114CrossRef Otsuka K, Shimizu K (1986) Pseudoelasticity and shape memory effects in alloys. Int Met Rev 31:93–114CrossRef
3.
go back to reference Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528CrossRef Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528CrossRef
4.
go back to reference Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
5.
6.
go back to reference Sarı U, Kırındı T (2008) Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater Charact 59:920–929CrossRef Sarı U, Kırındı T (2008) Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater Charact 59:920–929CrossRef
7.
go back to reference Araki Y, Endo T, Omori T, Sutou Y In-situ observations of a martensitic transformation in a Cu–Zn–Al single crystal driven by stress or strain at springer link, Koetaka Y, Kainuma R et al (2011) Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthq Eng Struct Dyn 40:107–115CrossRef Araki Y, Endo T, Omori T, Sutou Y In-situ observations of a martensitic transformation in a Cu–Zn–Al single crystal driven by stress or strain at springer link, Koetaka Y, Kainuma R et al (2011) Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthq Eng Struct Dyn 40:107–115CrossRef
9.
go back to reference Liu Y, Van Humbeeck J, Stalmans R, Delaey L (1997) Some aspects of the properties of NiTi shape memory alloy. J Alloy Compd 247:115–121CrossRef Liu Y, Van Humbeeck J, Stalmans R, Delaey L (1997) Some aspects of the properties of NiTi shape memory alloy. J Alloy Compd 247:115–121CrossRef
10.
go back to reference Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K (1998) Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloy Compd 266:191–200CrossRef Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K (1998) Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloy Compd 266:191–200CrossRef
11.
go back to reference Xu HB (2001) Cu-based high-temperature shape-memory alloys and their thermal stability. Mater Sci Forum 394–3:375–382 Xu HB (2001) Cu-based high-temperature shape-memory alloys and their thermal stability. Mater Sci Forum 394–3:375–382
12.
go back to reference Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. MMTA 27:2187CrossRef Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. MMTA 27:2187CrossRef
13.
go back to reference Yang SY, Su Y, Wang CP, Liu XJ (2014) Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B 185:67–73CrossRef Yang SY, Su Y, Wang CP, Liu XJ (2014) Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B 185:67–73CrossRef
14.
go back to reference Matlakhova LA, Pereira EC, Matlakhov AN, Monteiroa SN, Toledo R (2008) Mechanical behavior and fracture characterization of a monocrystalline Cu–Al–Ni subjected to thermal cycling treatments under load. Mater Charact 59:1630–1637CrossRef Matlakhova LA, Pereira EC, Matlakhov AN, Monteiroa SN, Toledo R (2008) Mechanical behavior and fracture characterization of a monocrystalline Cu–Al–Ni subjected to thermal cycling treatments under load. Mater Charact 59:1630–1637CrossRef
15.
go back to reference Nakata Y, Tadaki T, Shimizu K (1985) Thermal cycling effects in a Cu–Al–Ni shape memory alloy. J Jpn Inst Met 26:646–652CrossRef Nakata Y, Tadaki T, Shimizu K (1985) Thermal cycling effects in a Cu–Al–Ni shape memory alloy. J Jpn Inst Met 26:646–652CrossRef
16.
go back to reference Wang CP, Su Y, Yang SY, Shi Z, Liu XJ (2014) A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct 23:025018–1–025018–7 Wang CP, Su Y, Yang SY, Shi Z, Liu XJ (2014) A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct 23:025018–1–025018–7
17.
go back to reference Kainuma R, Takahashi S, Ishida K (1995) Ductility shape memory alloys of the Cu–Al–Mn system. J de Phys IV 5:961–966 Kainuma R, Takahashi S, Ishida K (1995) Ductility shape memory alloys of the Cu–Al–Mn system. J de Phys IV 5:961–966
18.
go back to reference Mallik US, Sampath V (2008) Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd 59:142–147CrossRef Mallik US, Sampath V (2008) Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd 59:142–147CrossRef
19.
go back to reference Mallik US, Sampath V (2008) Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng A 481–482:680–683CrossRef Mallik US, Sampath V (2008) Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng A 481–482:680–683CrossRef
20.
go back to reference Oliveira JP, Panton B et al (2016) Laser welded superelastic Cu–Al–Mn shape memory alloy wires. Mater Des 90:122–128 Oliveira JP, Panton B et al (2016) Laser welded superelastic Cu–Al–Mn shape memory alloy wires. Mater Des 90:122–128
21.
go back to reference Sutou Y, Omori T, Okamoto T, Kainuma R, Ishida K (2001) Effect of grain refinement on the mechanical and shape memory properties of Cu–Al–Mn base alloys. J Phys IV France 11:185–190CrossRef Sutou Y, Omori T, Okamoto T, Kainuma R, Ishida K (2001) Effect of grain refinement on the mechanical and shape memory properties of Cu–Al–Mn base alloys. J Phys IV France 11:185–190CrossRef
22.
go back to reference Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRef Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850CrossRef
23.
go back to reference Oliveira JP, Zeng Z et al (2016) Improvement of damping properties in laser processed superelastic Cu–Al–Mn shape memory alloys. Mater Des 98:280–284 Oliveira JP, Zeng Z et al (2016) Improvement of damping properties in laser processed superelastic Cu–Al–Mn shape memory alloys. Mater Des 98:280–284
24.
go back to reference Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5759–5770CrossRef Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5759–5770CrossRef
25.
go back to reference Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on bainitic and thermally induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5748–5758CrossRef Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on bainitic and thermally induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5748–5758CrossRef
26.
go back to reference Sutou Y, Kainuma R, Ishida K (1999) Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater Sci Eng A 273–275:375–379CrossRef Sutou Y, Kainuma R, Ishida K (1999) Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater Sci Eng A 273–275:375–379CrossRef
27.
go back to reference Mallik US, Sampath V (2009) Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloy Compd 469:156–163CrossRef Mallik US, Sampath V (2009) Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloy Compd 469:156–163CrossRef
28.
go back to reference Ma YQ, Yang SY, Liu Y, Liu XJ (2009) The ductility and shape-memory properties of Ni–Mn–Co–Ga high-temperature shape-memory alloys. Acta Mater 57:3232–3241CrossRef Ma YQ, Yang SY, Liu Y, Liu XJ (2009) The ductility and shape-memory properties of Ni–Mn–Co–Ga high-temperature shape-memory alloys. Acta Mater 57:3232–3241CrossRef
29.
go back to reference Canbay CA, Gudeloglu S, Genc ZK (2015) Investigation of the enthalpy/entropy variation and structure of Cu–Al–Mn–Fe shape memory alloys. Int J Thermophys 36:783–794CrossRef Canbay CA, Gudeloglu S, Genc ZK (2015) Investigation of the enthalpy/entropy variation and structure of Cu–Al–Mn–Fe shape memory alloys. Int J Thermophys 36:783–794CrossRef
30.
go back to reference Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36:1873–1889CrossRef Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36:1873–1889CrossRef
31.
go back to reference Canbay CA, Aydogdu A (2013) Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim 113:731–737CrossRef Canbay CA, Aydogdu A (2013) Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim 113:731–737CrossRef
32.
go back to reference Kainuma R et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–959CrossRef Kainuma R et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–959CrossRef
33.
go back to reference Tanaka Y et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327:1488–1490CrossRef Tanaka Y et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327:1488–1490CrossRef
34.
go back to reference Otsuka K, Wayman CM, Nakai K, Sakamota H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu–Al–Ni alloys. Acta Metall 24:207–226CrossRef Otsuka K, Wayman CM, Nakai K, Sakamota H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu–Al–Ni alloys. Acta Metall 24:207–226CrossRef
35.
go back to reference Picornell C, Pons J, Cesari E (2001) Stabilization of martensite by applying compressive stress in Cu–Al–Ni single crystals. Acta Mater 49:4221–4230CrossRef Picornell C, Pons J, Cesari E (2001) Stabilization of martensite by applying compressive stress in Cu–Al–Ni single crystals. Acta Mater 49:4221–4230CrossRef
36.
go back to reference Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270CrossRef Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270CrossRef
37.
go back to reference Oliveira JP, Miranda RM, Schell N, Fernandes FMB (2016) High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue 83:195–200CrossRef Oliveira JP, Miranda RM, Schell N, Fernandes FMB (2016) High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue 83:195–200CrossRef
38.
go back to reference Oliveira JP, Fernandes FMB, Schell N, Miranda RM (2016) Martensite stabilization during superelastic cycling of laser welded NiTi plates. Mater Lett 171:273–276CrossRef Oliveira JP, Fernandes FMB, Schell N, Miranda RM (2016) Martensite stabilization during superelastic cycling of laser welded NiTi plates. Mater Lett 171:273–276CrossRef
39.
go back to reference Yang SY, Omori T, Wang CP, Liu Y, Makoto N et al (2016) A jumping shape memory alloy under heat. Sci Rep 6:21754CrossRef Yang SY, Omori T, Wang CP, Liu Y, Makoto N et al (2016) A jumping shape memory alloy under heat. Sci Rep 6:21754CrossRef
40.
go back to reference Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. ASM, Materials Park Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. ASM, Materials Park
41.
go back to reference Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park
42.
go back to reference Lee BJ (1993) A thermodynamic evaluation of the Cr–Mn and Fe–Cr–Mn systems. Metall Trans A 24A:1919–1933CrossRef Lee BJ (1993) A thermodynamic evaluation of the Cr–Mn and Fe–Cr–Mn systems. Metall Trans A 24A:1919–1933CrossRef
43.
go back to reference Omori T, Kusama T et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef Omori T, Kusama T et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef
Metadata
Title
Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys
Authors
Shuiyuan Yang
Fan Zhang
Jialin Wu
Jinbin Zhang
Cuiping Wang
Xingjun Liu
Publication date
30-01-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0827-x

Other articles of this Issue 10/2017

Journal of Materials Science 10/2017 Go to the issue

Premium Partners