Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Microsystems Manufacturing Methods: Integrated Circuit Processing Steps

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A general overview of the processing steps commonly used in integrated circuit (IC) manufacturing is provided in Chap. 3. How each processing step is performed, the equipment commonly used, and guidance on the expected dimensional variations when performing the processing step are given. The subsequent chapter will focus on specialized processing steps used in MEMS fabrication. The major categories of processing steps used in IC fabrication include depositions or growths; lithography; etching; impurity doping; and metrology. Depending on the process sequence involved, there may also be other types of processing steps in the sequence as well such as planarization, rapid thermal anneals, and others. A number of these processing steps will be performed sequentially to implement the ICs, and some will be repeated multiple times. Once the fabrication is completed, the wafers will usually go through a series of tests to determine their functionality and performance. This is discussed in more detail in Chaps. 7, 8, and 9. Table 3.4 provides a compilation of the expected “best-case” dimensional variations for each of the processing steps reviewed in this chapter as a quick reference.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A chemical precursor is a chemical compound that participates in a chemical reaction that produces another chemical compound.
 
2
For interested readers, more information about SUPREM can be obtained at http://​www-tcad.​stanford.​edu/​tcad/​programs/​suprem-IV.​GS/​Book.​html.
 
3
Interstitial atoms are atoms that are located in the crystal but are not part of the crystal lattice of the material.
 
4
Gaussian statistical distributions will be covered in a later chapter.
 
Literature
1.
go back to reference C.Y. Change, S.M. Sze, VLSI Technology, ULSI Technology (McGraw Hill, New York, 1996) C.Y. Change, S.M. Sze, VLSI Technology, ULSI Technology (McGraw Hill, New York, 1996)
2.
go back to reference S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1- Process Technology (Lattice Press, Sunset Beach, 1986) S. Wolf, R.N. Tauber, Silicon Processing for the VLSI Era, Volume 1- Process Technology (Lattice Press, Sunset Beach, 1986)
3.
go back to reference S.A. Cambell, The Science and Engineering of Microelectronic Fabrication (Oxford Press, New York, 1996) S.A. Cambell, The Science and Engineering of Microelectronic Fabrication (Oxford Press, New York, 1996)
4.
go back to reference P. van Zant, Microchip Fabrication (McGraw Hill, New York, 2000) P. van Zant, Microchip Fabrication (McGraw Hill, New York, 2000)
5.
go back to reference S.M. Sze, Physics of Semiconductor Devices (Wiley Inter-science, New York, 1981) S.M. Sze, Physics of Semiconductor Devices (Wiley Inter-science, New York, 1981)
6.
go back to reference B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Devices ED-27, 606 (1980)CrossRef B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Devices ED-27, 606 (1980)CrossRef
7.
8.
go back to reference R.R. Razouk, B.E. Deal, Extended abstracts of the May 1979 Electrochemical Soc. Meeting, Abstract 135. J. Electrochem. Soc. 126, 1573 (1979)CrossRef R.R. Razouk, B.E. Deal, Extended abstracts of the May 1979 Electrochemical Soc. Meeting, Abstract 135. J. Electrochem. Soc. 126, 1573 (1979)CrossRef
9.
go back to reference B.E. Deal, A.S. Grove, General relationship for the thermal oxidation in steam and oxygen. J. Appl. Phys. 36, 3770 (1965)CrossRef B.E. Deal, A.S. Grove, General relationship for the thermal oxidation in steam and oxygen. J. Appl. Phys. 36, 3770 (1965)CrossRef
12.
go back to reference A. Sherman, Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications (Noyes, Park Ridge, 1987) A. Sherman, Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications (Noyes, Park Ridge, 1987)
13.
go back to reference A.S. Grove, Mass transfer in semiconductor technology. Ind. Eng. Chem. 58, 48 (1966)CrossRef A.S. Grove, Mass transfer in semiconductor technology. Ind. Eng. Chem. 58, 48 (1966)CrossRef
14.
go back to reference B. J. Baliga (ed.), Epitaxial Silicon Technology (Academic Press, Orlando, 1986) B. J. Baliga (ed.), Epitaxial Silicon Technology (Academic Press, Orlando, 1986)
15.
go back to reference R.A. Levy, K. Nassau, Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing. Solid State Technol. 29, 123 (1980) R.A. Levy, K. Nassau, Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing. Solid State Technol. 29, 123 (1980)
16.
go back to reference W. Kern, G.L. Schnable, CVD BPSG for Si devices. RCA Rev. 43, 423 (1982) W. Kern, G.L. Schnable, CVD BPSG for Si devices. RCA Rev. 43, 423 (1982)
17.
go back to reference D.A.P. Bulla, N.I. Morimoto, Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 334, 60 (1998)CrossRef D.A.P. Bulla, N.I. Morimoto, Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 334, 60 (1998)CrossRef
18.
go back to reference K. Seshan (ed.), Thin Film Deposition: Processes and Technologies, 2nd edn. (Noyes Publications, William Andrew Publishing, Norwich, 2002) K. Seshan (ed.), Thin Film Deposition: Processes and Technologies, 2nd edn. (Noyes Publications, William Andrew Publishing, Norwich, 2002)
19.
go back to reference R.S. Rosler, Low pressure CVD production processes for poly, nitride, and oxide. Solid State Technol. 20(4), 63 (1977) R.S. Rosler, Low pressure CVD production processes for poly, nitride, and oxide. Solid State Technol. 20(4), 63 (1977)
20.
go back to reference H.O. Pierson, O. Hugh, Handbook of Chemical Vapor Deposition (CVD) (William Andrew Publishing, Norwich, 1992) H.O. Pierson, O. Hugh, Handbook of Chemical Vapor Deposition (CVD) (William Andrew Publishing, Norwich, 1992)
21.
go back to reference P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16(4), 2003 (1998)CrossRef P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16(4), 2003 (1998)CrossRef
22.
go back to reference P.J. Frencha, P.M. Sarrob, R. Malleeb, E.J.M. Fakkelddijc, R.F. Wolffenbuttela, Sensors Actuators A Phys. 58(2), 149 (1997)CrossRef P.J. Frencha, P.M. Sarrob, R. Malleeb, E.J.M. Fakkelddijc, R.F. Wolffenbuttela, Sensors Actuators A Phys. 58(2), 149 (1997)CrossRef
23.
go back to reference D.V. Morgan, K. Board, An Introduction to Semiconductor Microtechnology, 2nd edn. (Wiley, West Sussex, England, 1991) D.V. Morgan, K. Board, An Introduction to Semiconductor Microtechnology, 2nd edn. (Wiley, West Sussex, England, 1991)
24.
go back to reference Gemini-2 Product Brochure, Gemini Research, Inc., Fremont, CA Gemini-2 Product Brochure, Gemini Research, Inc., Fremont, CA
25.
go back to reference R. Iscoff, Hotwall LPCVD reactors: Considering the choices. Semicond. Int., 60 (1991) R. Iscoff, Hotwall LPCVD reactors: Considering the choices. Semicond. Int., 60 (1991)
26.
go back to reference A.C. Adams, Dielectric and polysilicon film deposition, in VLSI Technology, ed. by S. M. Sze, (McGraw Hill, New York, 1988) A.C. Adams, Dielectric and polysilicon film deposition, in VLSI Technology, ed. by S. M. Sze, (McGraw Hill, New York, 1988)
27.
go back to reference T.I. Kamins, Structure and properties of LPCVD silicon films. J. Electrochem. Soc. 127, 686 (1980)CrossRef T.I. Kamins, Structure and properties of LPCVD silicon films. J. Electrochem. Soc. 127, 686 (1980)CrossRef
28.
go back to reference R.D. Compton, PECVD: A versatile technology. Semicond. Int., 60 (1992) R.D. Compton, PECVD: A versatile technology. Semicond. Int., 60 (1992)
29.
go back to reference S. Nguyen, S. Burton, J.D. Mackenzie, The variation of physical properties of plasma-deposited silicon nitride and oxynitride and their compositions. J. Electrochem. Soc. 131, 2348 (1984)CrossRef S. Nguyen, S. Burton, J.D. Mackenzie, The variation of physical properties of plasma-deposited silicon nitride and oxynitride and their compositions. J. Electrochem. Soc. 131, 2348 (1984)CrossRef
30.
go back to reference R.L. Purunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97(12) (2005) R.L. Purunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97(12) (2005)
31.
go back to reference S.M. George, Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010)CrossRef S.M. George, Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010)CrossRef
32.
go back to reference H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. A 21(6), 2231 (2003)CrossRef H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. A 21(6), 2231 (2003)CrossRef
33.
go back to reference A.J.M. Mackus, D. Garcia-Alonso, H.C.M. Knoops, A.A. Bol, W.M.M. Kessels, Room-temperature atomic layer deposition of platinum. Chem. Mater. 25(9), 1769–1774 (2013)CrossRef A.J.M. Mackus, D. Garcia-Alonso, H.C.M. Knoops, A.A. Bol, W.M.M. Kessels, Room-temperature atomic layer deposition of platinum. Chem. Mater. 25(9), 1769–1774 (2013)CrossRef
34.
go back to reference S.E. Potts, W.M.M. Kessels, Energy-enhanced atomic layer deposition for more process and precursor versatility. Coord. Chem. Rev. 257(23–24), 3254–3270 (2013)CrossRef S.E. Potts, W.M.M. Kessels, Energy-enhanced atomic layer deposition for more process and precursor versatility. Coord. Chem. Rev. 257(23–24), 3254–3270 (2013)CrossRef
35.
go back to reference H.C.M. Knoops, E.M.J. Braeken, K. de Peuter, S.E. Potts, S. Haukka, V. Pore, W.M.M. Kessels, Atomic layer deposition of silicon nitride from bis( -butylamino)silane and N plasma. ACS Appl. Mater. Interfaces 7(35), 19857 (2015)CrossRef H.C.M. Knoops, E.M.J. Braeken, K. de Peuter, S.E. Potts, S. Haukka, V. Pore, W.M.M. Kessels, Atomic layer deposition of silicon nitride from bis( -butylamino)silane and N plasma. ACS Appl. Mater. Interfaces 7(35), 19857 (2015)CrossRef
36.
go back to reference E. Langereis, H.C.M. Knoops, A.J.M. Mackus, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, Synthesis and characterization of low-resistivity TaNx films by remote plasma atomic layer deposition. J. Appl. Phys. 102(8), 083517 (2007)CrossRef E. Langereis, H.C.M. Knoops, A.J.M. Mackus, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, Synthesis and characterization of low-resistivity TaNx films by remote plasma atomic layer deposition. J. Appl. Phys. 102(8), 083517 (2007)CrossRef
37.
go back to reference G.N. Parsons, J.W. Elam, S.M. George, S. Haukka, H. Jeon, W.M.M. Kessels, M. Leskelä, P. Poodt, M. Ritala, History of atomic layer deposition and its relationship with the American Vacuum Society. J. Vac. Sci. Technol. A 31(5), 050818 (2013)CrossRef G.N. Parsons, J.W. Elam, S.M. George, S. Haukka, H. Jeon, W.M.M. Kessels, M. Leskelä, P. Poodt, M. Ritala, History of atomic layer deposition and its relationship with the American Vacuum Society. J. Vac. Sci. Technol. A 31(5), 050818 (2013)CrossRef
39.
go back to reference E. Jia, C. Zhou, W. Wang, Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition. Nanoscale Res. Lett. 10, 129 (2015)CrossRef E. Jia, C. Zhou, W. Wang, Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition. Nanoscale Res. Lett. 10, 129 (2015)CrossRef
40.
go back to reference R. Giang, Vacuum evaporation, in Handbook of Thin Film Technology, ed. by L. Maissel, R. Giang, (McGraw Hill, New York, 1970) R. Giang, Vacuum evaporation, in Handbook of Thin Film Technology, ed. by L. Maissel, R. Giang, (McGraw Hill, New York, 1970)
41.
go back to reference R.J. Hill, Physical Vapor Deposition (Temescal, Berkeley, 1976) R.J. Hill, Physical Vapor Deposition (Temescal, Berkeley, 1976)
42.
go back to reference M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)MATH M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992)MATH
43.
go back to reference G.K. Werner, G.S. Anderson, The nature of physical sputtering, in Handbook of Thin Films, ed. by L. I. Maissel, R. Glang, (McGraw Hill, New York, 1970) G.K. Werner, G.S. Anderson, The nature of physical sputtering, in Handbook of Thin Films, ed. by L. I. Maissel, R. Glang, (McGraw Hill, New York, 1970)
45.
go back to reference P.G. Shewmon, Diffusion in Solids (McGraw Hill, New York, 1963) P.G. Shewmon, Diffusion in Solids (McGraw Hill, New York, 1963)
46.
go back to reference K. Taniguchi, K. Kurosawa, M. Kashiwagi, Oxidation enhanced diffusion of boron and phosphorus in <100> silicon. J. Electrochem. Soc. 127, 2243 (1980)CrossRef K. Taniguchi, K. Kurosawa, M. Kashiwagi, Oxidation enhanced diffusion of boron and phosphorus in <100> silicon. J. Electrochem. Soc. 127, 2243 (1980)CrossRef
47.
go back to reference C.J. Coe, The lateral diffusion of boron in polycrystalline silicon and its influence on fabrication of sub-micron MOS. Solid State Electron. 20, 985 (1977)CrossRef C.J. Coe, The lateral diffusion of boron in polycrystalline silicon and its influence on fabrication of sub-micron MOS. Solid State Electron. 20, 985 (1977)CrossRef
48.
go back to reference B. Swaminathan, K.C. Saraswat, R.W. Dulton, T.I. Kamins, Diffusion of arsenic in polycrystalline silicon. Appl. Phys. Lett. 40, 795 (1980)CrossRef B. Swaminathan, K.C. Saraswat, R.W. Dulton, T.I. Kamins, Diffusion of arsenic in polycrystalline silicon. Appl. Phys. Lett. 40, 795 (1980)CrossRef
49.
go back to reference S.M. Hu, S. Schmidt, Interaction in sequential diffusion process in a semiconductor. Phys. Rev. 107, 2 (1957) S.M. Hu, S. Schmidt, Interaction in sequential diffusion process in a semiconductor. Phys. Rev. 107, 2 (1957)
50.
go back to reference G. Deanaley, J.H. Freeman, R.S. Nelson, J. Stephen, Ion Implantation (New Holland, Amsterdam, 1973) G. Deanaley, J.H. Freeman, R.S. Nelson, J. Stephen, Ion Implantation (New Holland, Amsterdam, 1973)
51.
go back to reference J.W. Mayer, L. Ericksone, J.A. Davies, Ion Implantation in Semiconductors, Silicon and Germanium (Academic Press, New York, 1970) J.W. Mayer, L. Ericksone, J.A. Davies, Ion Implantation in Semiconductors, Silicon and Germanium (Academic Press, New York, 1970)
52.
go back to reference J.F. Gibbons, Ion implantation in semiconductors – Part 1, range distribution theory and experiments. Proc. IEEE 56, 295 (1968)CrossRef J.F. Gibbons, Ion implantation in semiconductors – Part 1, range distribution theory and experiments. Proc. IEEE 56, 295 (1968)CrossRef
53.
go back to reference M.I. Current, W.A. Keenan, A performance survey of production ion implanters. Solid State Technol., 139 (1985) M.I. Current, W.A. Keenan, A performance survey of production ion implanters. Solid State Technol., 139 (1985)
54.
go back to reference V. Bakshi, EUV Lithography, SPIE Press Book, vol. PM178, (2008) V. Bakshi, EUV Lithography, SPIE Press Book, vol. PM178, (2008)
55.
go back to reference Y. Vladimirsky, Chapter 10: Lithography, in Vacuum Ultraviolet Spectroscopy II, ed. by J. A. Samson, D. L. Ederer, (Academic Press, Cambridge, 1998), pp. 205–223 Y. Vladimirsky, Chapter 10: Lithography, in Vacuum Ultraviolet Spectroscopy II, ed. by J. A. Samson, D. L. Ederer, (Academic Press, Cambridge, 1998), pp. 205–223
56.
go back to reference S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-Nanometer resolution. Science 272(5258), 85–87 (1996)CrossRef S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-Nanometer resolution. Science 272(5258), 85–87 (1996)CrossRef
57.
go back to reference B.W. Smith, Y. Fan, M. Slocum, L. Zavyalova, 25nm immersion lithography at a 193 nm wavelength, Proceedings, SPIE, (2005) B.W. Smith, Y. Fan, M. Slocum, L. Zavyalova, 25nm immersion lithography at a 193 nm wavelength, Proceedings, SPIE, (2005)
58.
go back to reference J. Burnett, High-index materials for UV lithography optics, Frontiers in Optics, OSA Technical Digest, Optical Society of America, (2006) J. Burnett, High-index materials for UV lithography optics, Frontiers in Optics, OSA Technical Digest, Optical Society of America, (2006)
60.
go back to reference W.H. Arnold, Towards 3nm overlay and critical dimension uniformity: An integrated error budget for double patterning lithography. Proc. SPIE 6924 (2008) W.H. Arnold, Towards 3nm overlay and critical dimension uniformity: An integrated error budget for double patterning lithography. Proc. SPIE 6924 (2008)
62.
go back to reference Y.K. Kim, et al., Lithography focus/exposure control and corrections to improve CDU at post etch step, Proc. of SPIE Vol. 6924, (2014) Y.K. Kim, et al., Lithography focus/exposure control and corrections to improve CDU at post etch step, Proc. of SPIE Vol. 6924, (2014)
63.
go back to reference W.S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, J. Yamamoto, R. Komatsubra, Rapid thermal implant annealing using Cold Wall and Hot Wall systems. Proc. Electrochem. Soc. 2002-11, 21 (2002) W.S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, J. Yamamoto, R. Komatsubra, Rapid thermal implant annealing using Cold Wall and Hot Wall systems. Proc. Electrochem. Soc. 2002-11, 21 (2002)
65.
go back to reference J. Karttunen, J. Kiihamaki, S. Franssila, Loading effects in deep silicon etching. Proc. SPIE 4174, 90 (2000)CrossRef J. Karttunen, J. Kiihamaki, S. Franssila, Loading effects in deep silicon etching. Proc. SPIE 4174, 90 (2000)CrossRef
66.
go back to reference S.L. Lai, D. Johnson, R. Westerman, Aspect ratio dependent etching lag reduction in deep silicon etch processes. J.. Vac. Sci. Technol. A 24(4), 1283 (2006)CrossRef S.L. Lai, D. Johnson, R. Westerman, Aspect ratio dependent etching lag reduction in deep silicon etch processes. J.. Vac. Sci. Technol. A 24(4), 1283 (2006)CrossRef
68.
go back to reference H.H. Gato, I. Kalinovski, K. Mohamed, Photoresist strip method for low-k dielectrics, USPTO patent, patent no. 8058178 B1, Nov 15, 2011 H.H. Gato, I. Kalinovski, K. Mohamed, Photoresist strip method for low-k dielectrics, USPTO patent, patent no. 8058178 B1, Nov 15, 2011
Metadata
Title
Microsystems Manufacturing Methods: Integrated Circuit Processing Steps
Author
Michael Huff
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40560-1_3